# Urbanized Stream Source Ratio

April 23, 2015 April Quarterly Review





### Goals of Proposed Approach

- Define a Stream Source Ratio (SSR) that quantifies the relative load attributed to instream sources (e.g. bed & bank erosion, resuspension)
  - Improve alignment of source area load reductions with upland and in-stream BMPs in the Watershed Model

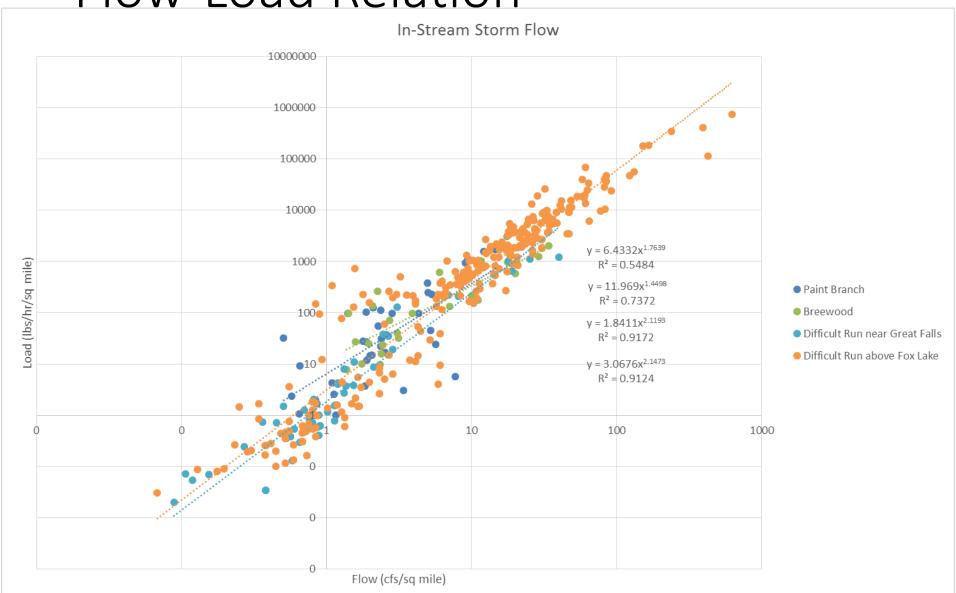
$$SSR = \frac{Bed \& Bank \ Erosion}{Bed \& Bank \ Erosion + Upland} = \frac{E}{E + U}$$

From Smith and Wilcock (2015)
E = Lowland Bank Erosion
U = Upland Sediment Supply

#### Regression Parameters

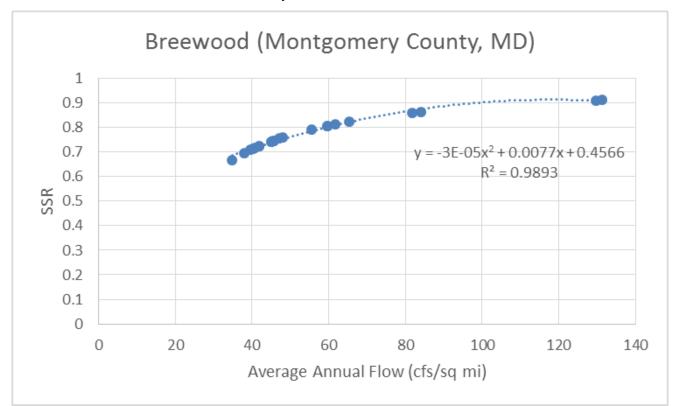
- Urban Corridor Regression Parameters dev. from:
  - Previous efforts
  - Available data

| Upland watershed data – variables affecting delivery of water and pollutant to |
|--------------------------------------------------------------------------------|
| stream (catchment hydrology)                                                   |


| Parameter                   | Potential Data Source                   |
|-----------------------------|-----------------------------------------|
| Impervious cover            | Local data – planimetric; NLCD          |
| Forest cover                | Anderson Level II (from State e.g. MDP) |
| Soil type                   | SSURGO                                  |
| Riparian land cover/buffers | Local data                              |
| Storm drainage density      | Local/ MS4 data; connectivity indicator |
| Density of outfalls         | Local/ MS4 data                         |
| BMP implementation          | Local/ MS4 data; % IC treated or other  |

#### Background Data

- New approach to use monitoring data to develop flowload/concentration relations
- CBWM hourly flow as proxy for monitored flow
- Mean upland concentration used for upland load
  - Watershed specific, where available
- SSR estimated as a result
- Relate drainage area characteristics to SSR
  - And/or flow-load/conc. trend
- Draft example predictive regression based on four watersheds:


$$SSR = -0.04 * DA - 0.48 * HSG CD$$
  
 $-0.03 * Riparian + 1.21$ 

## Flow-Load Relation



#### Next Steps

- Compare SSR results with USGS efforts (WVU stream cross sections and sediment budget) for Difficult Run
- Add watersheds from Baltimore City and Baltimore County with sediment data
- Test SSR for annual variability

