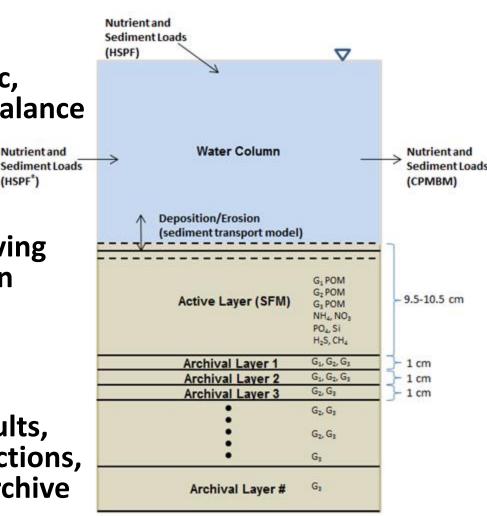


Conowingo Pond Mass Balance Model Update

(HSPF*)


Goals

develop coupled hydrodynamic, sediment transport, nutrient balance model for Conowingo Pond **Nutrient and**

determine composition/ bioavailability of nutrients leaving the pond during a resuspension event

Today

Sediment transport model results, diagenesis data analysis, G-fractions, results from standalone and archive stack versions of SFM

Sediment Transport Model Update

- Sediment Transport (same as before):
 - Five size classes: clay, silt, sand, gravel, coal
- Short-term and Long-term simulations completed
 - Calibration: 2008-2014 (short-term)
 - Confirmation: <u>1997</u>-2014 (long-term)
- Sediment loads at Holtwood:
 - HEC-RAS (WEST) simulation results: 2008-2014
 - HEC-RAS rating curve: 1997-2007
- Watershed sediment loads (Muddy and Broad Creeks):
 - HSPF Phase 6 Beta 2

Size Classes and Settling Speeds

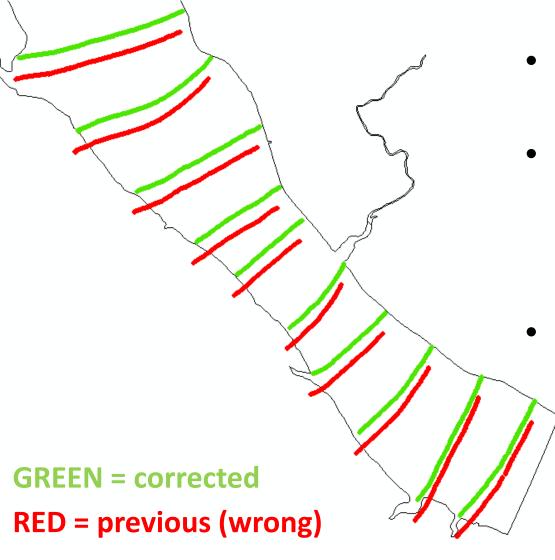
Settling speeds for Conowingo by Sanford et al. (2016):

Particle Size (mm)	.003	.009	.035	0.5
Ws (mm/s)	.0045	.07	1.2	50*

- Large particles: Cheng (1997) settling speed relationship
- In the model (subject to revision):

	Clay	Silt	Sand	Gravel	Coal
Diameter (μm)	3	35	500	4,000	354 (effective diameter)
Settling Speed (mm/s)	0.0004	1.2	50	273	42

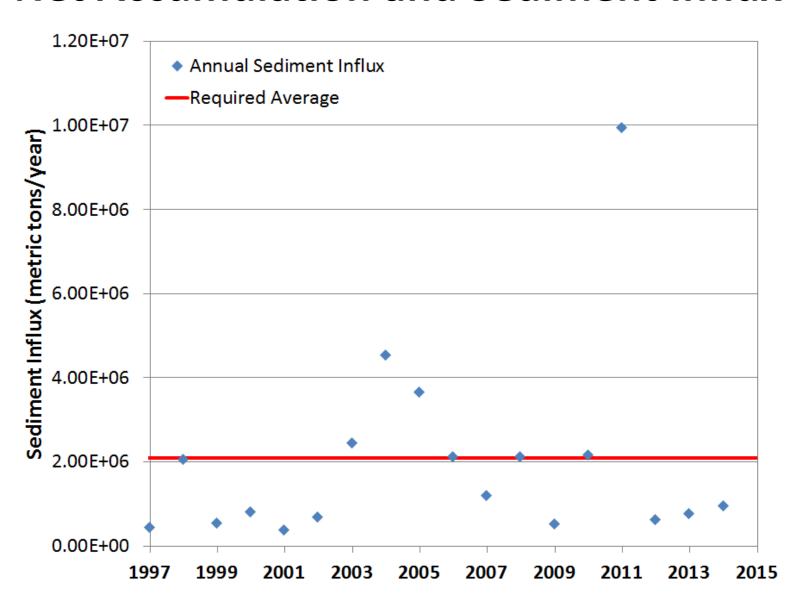
Updated Evaluation of 1996 Bathymetry


- Discovered that 1996 data were in wrong projection:
 - Received in NAD 1983 datum, should have been NAD 1927
- Points shift by ~400 ft and better align to riverbanks
- Changes affect bed elevations, elevation differences:

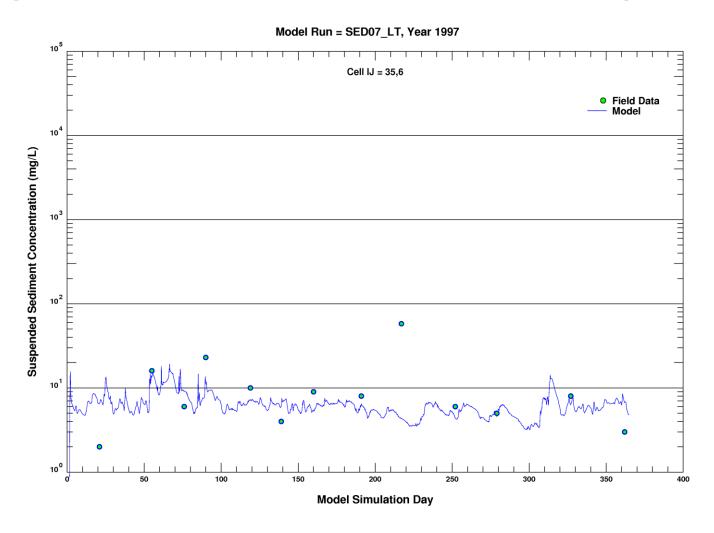
End	Start	Survey Type	Unweighted Average Difference (ft)	Area-Weighted Average Difference (ft)
2008	1996	Raw	2.38 (before: 0.705)	1.72 (before: 0.433)
2011	2008	Raw	0.204	0.064
2015	1996	Raw	2.69 (before: 1.022)	1.69 (before 0.642)
2015	2008	Raw	0.317	0.210
2015	2011	Raw	0.113	0.145

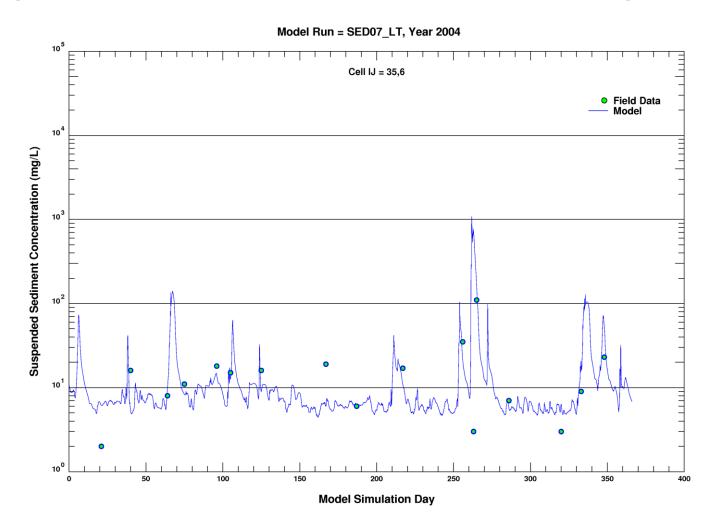
 However, sediment mass implied by bed elevation difference for 1996 appears to be unrealistically large

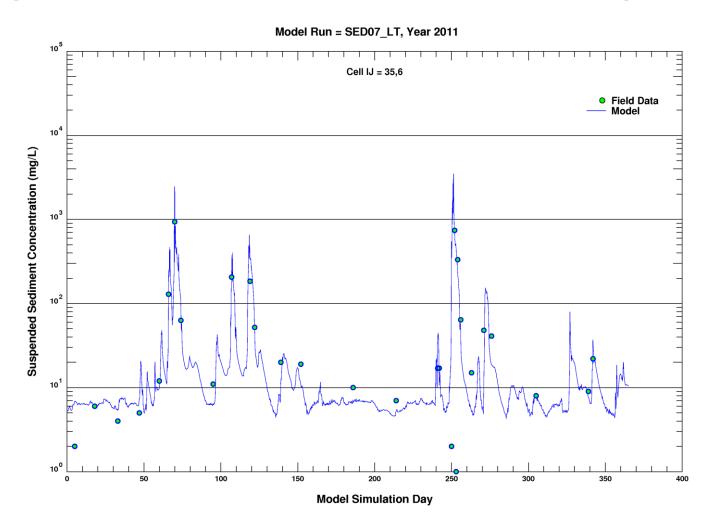
Locations Shift When Datum Is Corrected

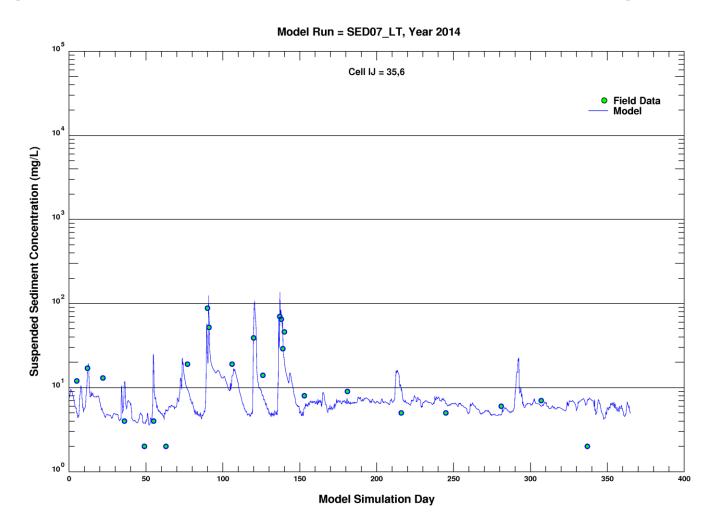

- Survey points better aligned with shoreline
- Uncertainties exist because transects do not always go bank to bank
- Consequence: more uncertainty in kriging results because of extrapolation at edges

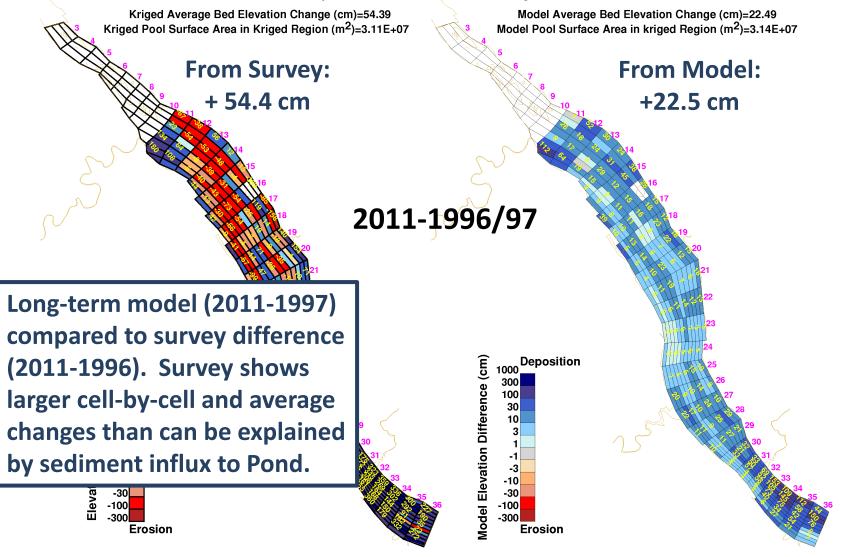
1996 Survey Results May Be Unrealistic


- Assume differences implied by 1996 survey are right:
 - Estimated pond-wide elevation change: +2.69 ft
 - Surveyed area of pond: ~7,500 acres
 - Sediment volume change: +8.82E+08 ft³ (+2.50E+07 m³)
 - Average bulk density of bed: ~100 pcf (1,600 kg/m3)
 - Time between 2015 and 1996 surveys: ~19 years
- Implied deposition rate is unrealistically large:
 - 2.1 million metric tons/year (2.32 million tons/year)
 - Average sediment influx to Pond:
 - 1997-2014: ~2.0 million metric tons/year
 - Would require 105% trapping efficiency if sediment load over Conowingo Dam were zero...


Net Accumulation and Sediment Influx







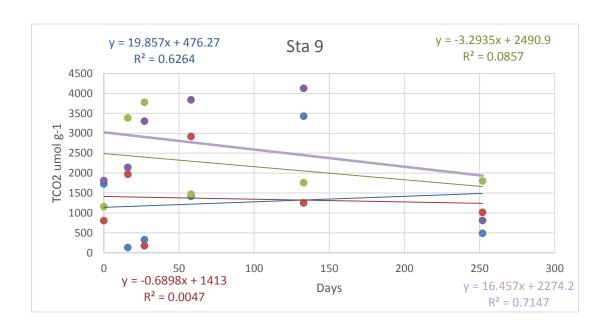
Long-Term Model: Bed Elevation Changes

Diagenesis Analysis

Long and Short Core Diagenesis
Data Provided by Jeff Cornwell and
Mike Owens (UMCES)

Long cores

- Incubations of 5 long-cores at 4-5 depth intervals, using 10 cm slices, over a 252-day incubation period (t = 0, 16, 27, 58, 133, 252 days)
- Looked at C, N, P
- NH₄ data is most reasonable, CO₂ too problematic, PO₄ also problematic due to high iron content of cores



Long Core N Diagenesis Analysis

			August 2015												
Not ame	mded with	Sulfate											Core	Ave Rate	Max Rate
Site	Depth		NH4+			L44x + 1.95	⁹¹ St	a 2		y = 0.0123x + 4.4 $R^2 = 0.1573$					
	Section	Days	umol g-1	7		= 0.7876								/day	/day
ta 2	5-15		2.13741											/ uay	/ uay
ta 2	5-15		1.948815		;						•		_	0.000054	0.0004.40
ita 2 ita 2	5-15 5-15		1.587341 0.440055	1-9 -	•								2	0.000051	0.000148
Sta 2	5-15		0.311986	<u> </u>		•					<u> </u>				
Sta 2	5-15		0.131349	NH4 7			•				•		5	0.000018	0.000061
Sta 2	25-35	0	1.923955	1		*							_		
Sta 2	25-35		4.251537		, 🗀		•				•		8	0.000088	0.000155
Sta 2	25-35		3.107927		0 20	40 7x + 3.335		80	100	120	140				
Sta 2	25-35	58	4.937703			0.0058	L	Days		y = 0.0191x + 1 $R^2 = 0.8868$			9	0.000108	0.000134
Sta 2	25-35		2.857776										9	0.000100	0.000131
Sta 2	25-35	252	0.084333										13	0.000062	0.000107
Sta 2	45-55	0	2.139464										15	0.000002	0.000107
Sta 2	45-55		6.123829						C (mg/g)	N (mg/g)	C/N				
Sta 2	45-55		5.844769	Aug-15	Conowingo	2	5-15	0-60	94.95	3.25	34.1				
Sta 2 Sta 2	45-55 45-55		5.410675 5.570448	Aug-15 Aug-15	Conowingo	2	25-35 45-55	0-60 0-60	58.1 119.9	2.6 3.85	26.1 36.3		Core	Ave Rate	Max Rate
Sta 2	45-55		2.283672	Aug-15	Conowingo	2	75-85	60-120	60.3	1.8	39.1				
				Aug-15	Conowingo	2	75-85	60-120	*	*	*			% G2	%G2
Sta 2	75-85	0	0.69927	Aug-15	Conowingo	2	145-155	120-180	89.7	2.1	49.8			/0 G 2	7002
Sta 2	75-85		1.082204	Aug-15	Conowingo	2	205-215	180-240	88.2	2.8	36.8		2	2.8	8.2
Sta 2	75-85		1.864721	Aug-15	Conowingo	2	265-275	240-300	68.1	3	26.5		Z	2.0	0.2
Sta 2 Sta 2	75-85 75-85		2.555667 3.313338									-	_		
Sta 2	75-85		0.521802		Rates								5	1.0	3.4
					10	5-15	umol/g/d 0		umol/g 232.14	/day 0.0000000	/yr 0.0000	_	0	4.0	0.6
					30	25-35	0.0017	2.6	185.71	0.0000000	0.0000		8	4.9	8.6
					50	45-55	0.0123	3.85	275.00	0.0000447	0.0163				
					80	75-85	0.0191	1.8	128.57	0.0001486	0.0542		9	6.0	7.5
									Ave	0.0000506	0.0185		13	3.4	5.9
									K _{G3} /K _{G2}	2.81%			10	J. T	3.5
									K _{G3} / K _{G2} K _{G3max} /K _{G2}	8.25%					
									GE GE					Evole	n Generation

Long Core C Diagenesis Analysis

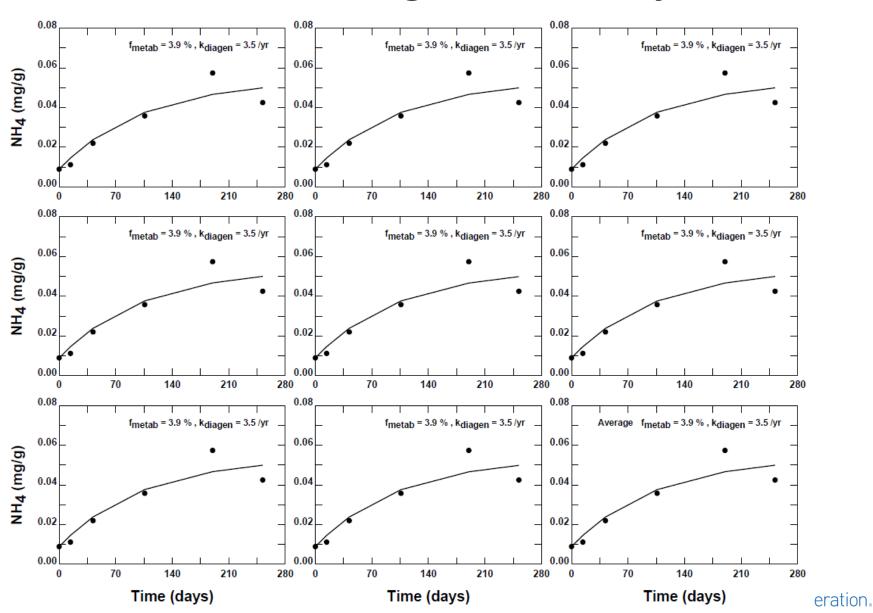
Short Core N and C Diagenesis Analysis

Short cores analyzed at 13 stations, 3 of which had replicate analysis; 0-2 cm depth, over a 252 day period (t = 0, 14, 42, 106, 190, 252)

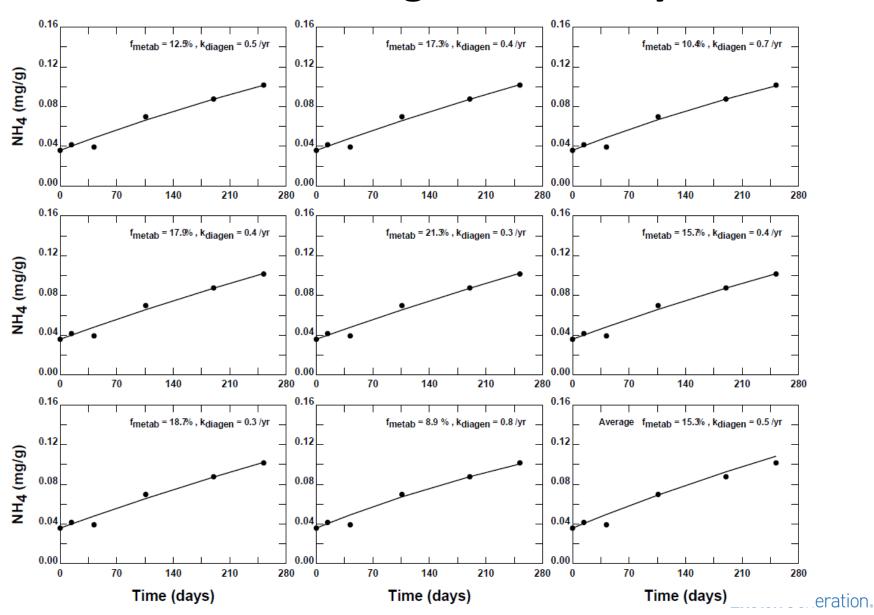
```
Fitting equation: C(t) = f_{meta} * C_{org}(0) * (1 - e^{-k_{diag}t})

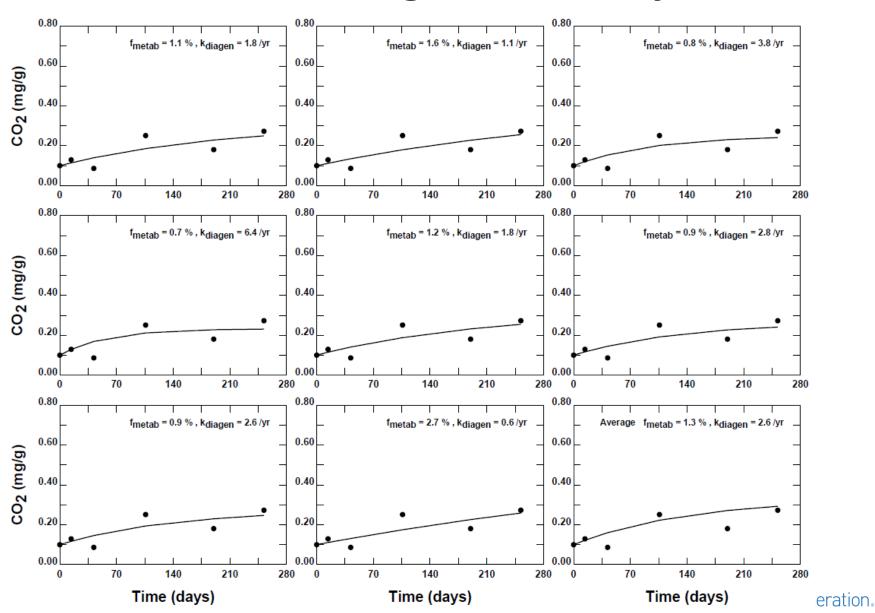
Where

C(t) = \text{concentration of nutrient at time} = t


f_{meta} = \text{metabolizable fraction}

C_{org}(0) = \text{concentration of organic matter at time} = 0


k_{diag} = \text{diagenesis rate}
```



Short Core N Diagenesis Analysis

Short Core N Diagenesis Analysis

Short Core C Diagenesis Analysis

Short Core Diagenesis Analysis Summary

	Nitr	ogen	Car	bon
Core	Imeta	k _{dias} (yr ⁻¹)	£meta	kdiag (yr-1)
	3.9	3.5	0.7-2.7	0.6-6.4
2	6.4-6.5	2.7-2.8	1.0-1.1	9.8-10.8
3	9.1-9.2	3.1-3.2	3.8-12.9	0.3-1.5
4	5.6-5.7	1.5-1.6	0.5-1.2	1.7-19.3
4rep	23.7-100	0.1-0.5	1.2-1.3	4.7-7.1
5	23.2-24.3	1.8-2.0	3.9-17.9	0.3-1.6
5rep	10.5	4.1	4.2-13.5	0.2-0.9
6	27.6	0.3-0.7	4.5-9.1	0.4-0.9
7	16.4-16.5	3.4	2.1-6.6	0.9-21.0
8	27.8-41.7	0.7-1.2	1.9-4.7	1.0-14.3
8rep	8.9-21.3	0.3-0.8	1.2-2.4	0.5-1.1
9	31.7-38.7	0.7-1.0	1.5	9.9-14.0
10	15.0	2.5	1.4-4.2	0.8-10.0
11	12.9-13.2	2.1-2.2	4.4-12.8	0.3-1.2
12	15.4	3.7	1.7-3.8	0.8-2.6
13	30-100	0.1-0.4	0.8-3.2	0.6-58.1

SFM G_1 =3.7-12.8 yr⁻¹ G_2 =0.66 yr⁻¹

Short Core Diagenesis Summary

Table 2. Rate constants for organic matter remineralization in Southern Chesapeake Bay

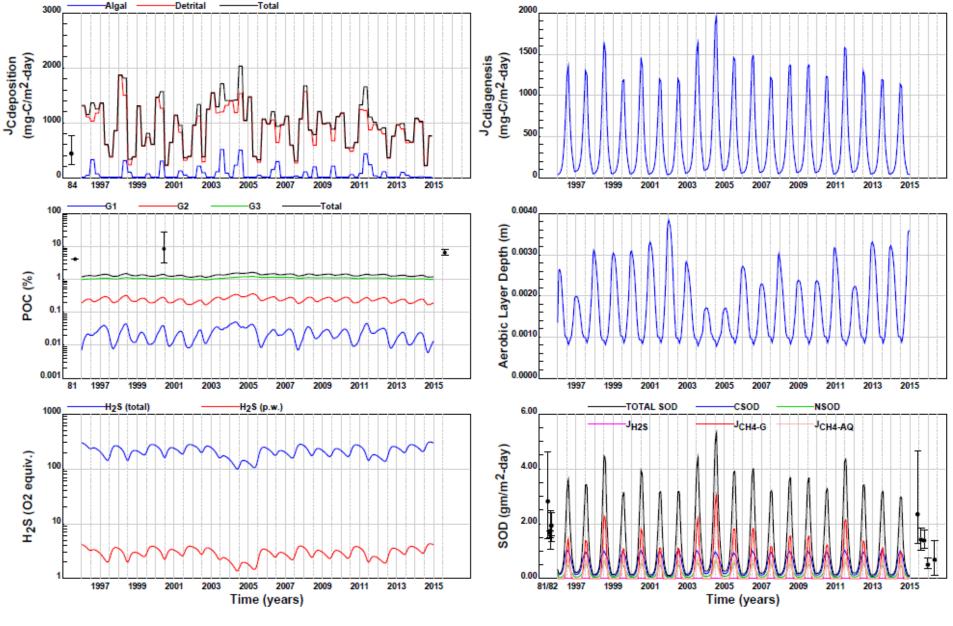
Metabolizable Fractions

sediments	.*						Metaboli	zable F	ractions
	D45	SO_4	ΣCO_2	PO_4	NH_4		C	N	Р
_	Depth	•					$G_{m,c}$	$G_{m,n}$	$G_{m,p}$
Expt.	(cm)	k_s	k_{c}	$k_{ ho}$	k_n	Average	(g)	(g)	(g)
17-1	0-2	3.76	2.01	5.66	3.39	3.70 ± 1.30	21%	26%	20%
17-2	5-7	1.72	0.77	2.34	2.88	1.93 ± 0.79	27%	12%	12%
17-3	12-14	0.22	0.17	0.69	0.47	0.39 ± 0.21	86%	1%	24%
21-1	0-2	5.13	2.42	9.86	8.40	6.45 ± 2.89	3%	5%	1%
21-2	5-7	2.07	1.46	4.60	4.27	3.10 ± 1.36	10%	9%	2%
21-3	12-14	0.37	0.16	0.09	0.30	0.23 ± 0.11	19%	3%	5%
23-1	02	4.89	8.10	5.29	14.64	8.23 ± 3.90	2%	4%	5%
23-2	5-7	5.11	3.18	5.07	6.68	5.01 ± 1.24	2%	2%	3%
23-3	12-14	3.10	1.13	2.81	1.46	2.13 ± 0.84	9%	2%	13%
25-1	0-2	0.80	0.51	8.40	6.42	4.03 ± 3.45	25%	13%	43%
25-2	5-7	0.18	0.18	1.10	3.03	1.12 ± 1.16	34%	3%	5%
25-3	12-14	0.35	0.39	1.64	0.00	0.80 ± 0.60	15%	0%	3%
26-1	0-2	1.17	0.70	12.05	6.79	5.18 ± 4.63	44%	38%	14%
26-2	5-7	0.49	0.28	2.70	2.77	1.56 ± 1.18	78%	13%	2%
26-3	12-14	0.58	0.24	1.88	0.47	0.79 ± 0.64	43%	26%	1%

All rate constants are yr-1.

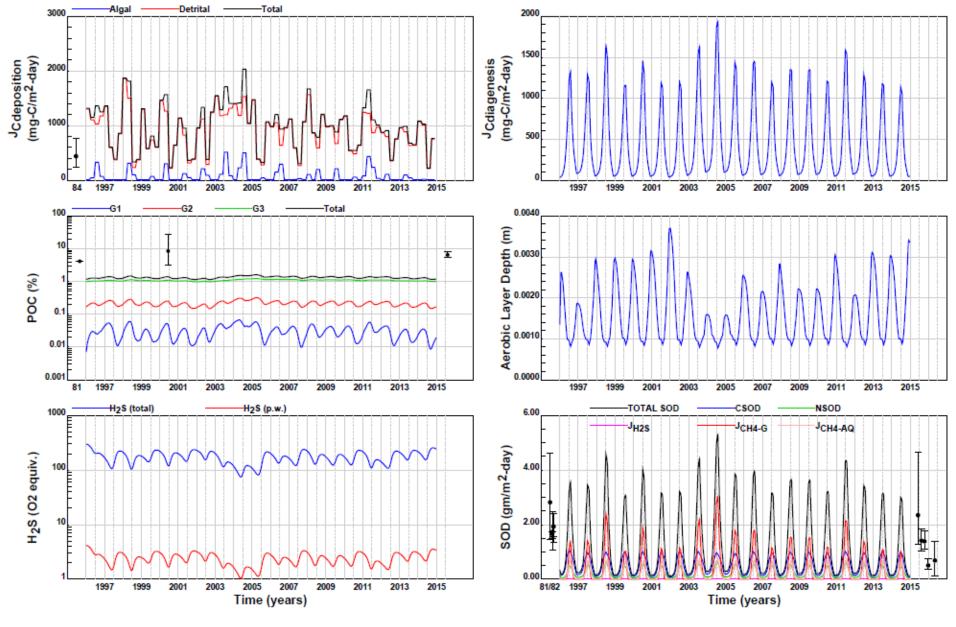
Burdige, 1991

Non- Algal POM G-fractions from Standalone SFM

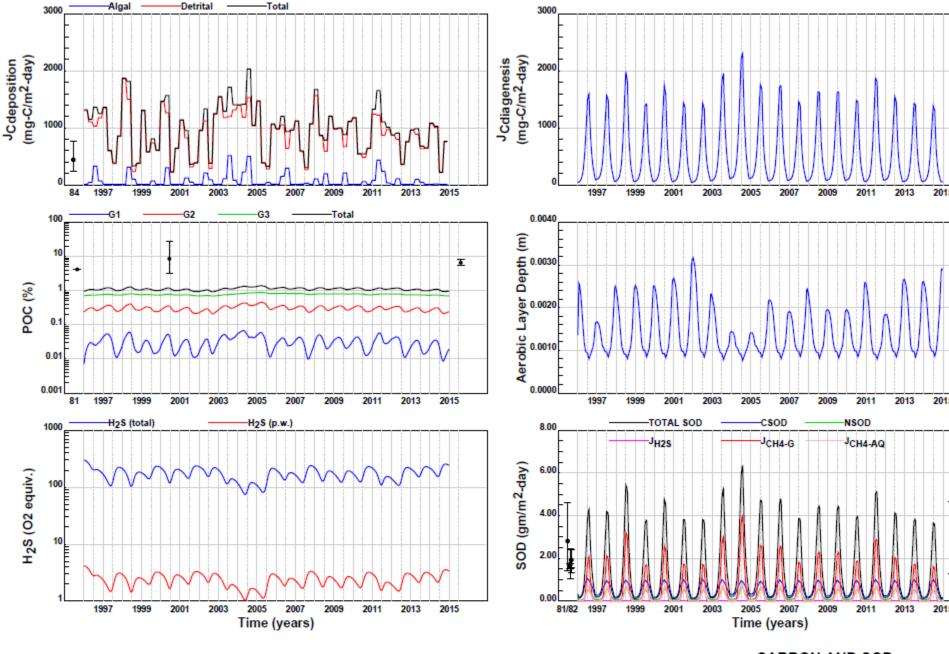

Estimated from SFM

	Carbon				Vitrogen		Phosphorus			
Run	fG1	fG2	fG3	fG1	fG2	fG3	fG1	fG2	fG3	
05	0.10	0.40	0.50	0.10	0.50	0.40	0.25	0.45	0.30	
10	0.15	0.35	0.50	0.15	0.45	0.40	0.30	0.40	0.30	
11	0.15	0.50	0.35	0.15	0.55	0.30	0.30	0.50	0.20	

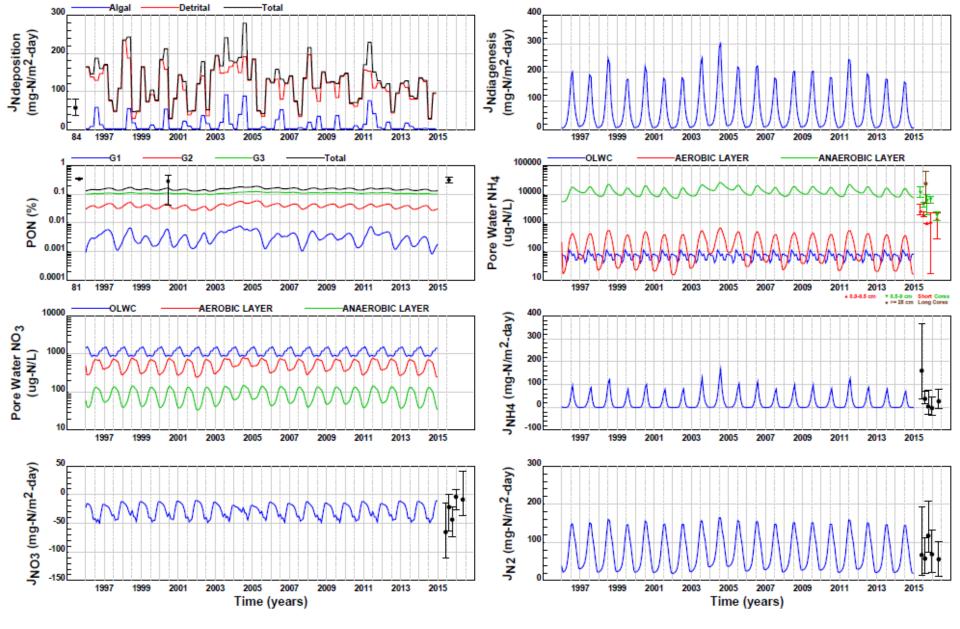
No significant differences in SFM behavior between runs 05 and 10. similar to the findings of Carl Cerco using the Bay water quality model


Run 11 suggests too great an allocation of POM to G_1 and G_2 carbon pools, but more difficult to conclude for N and P

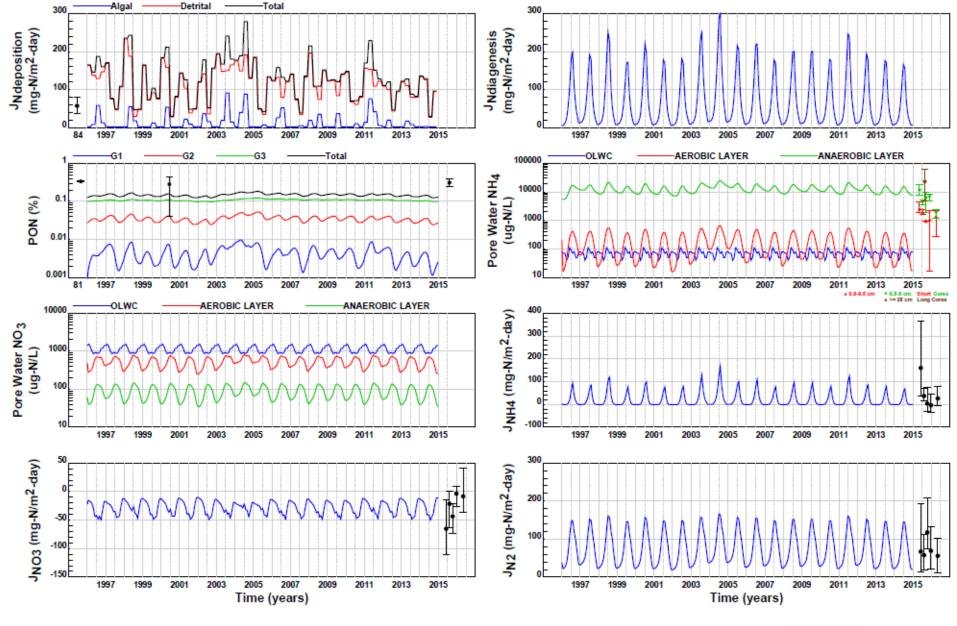
CARBON AND SOD


CONOWINGO POND STAND ALONE SFM

CARBON AND SOD

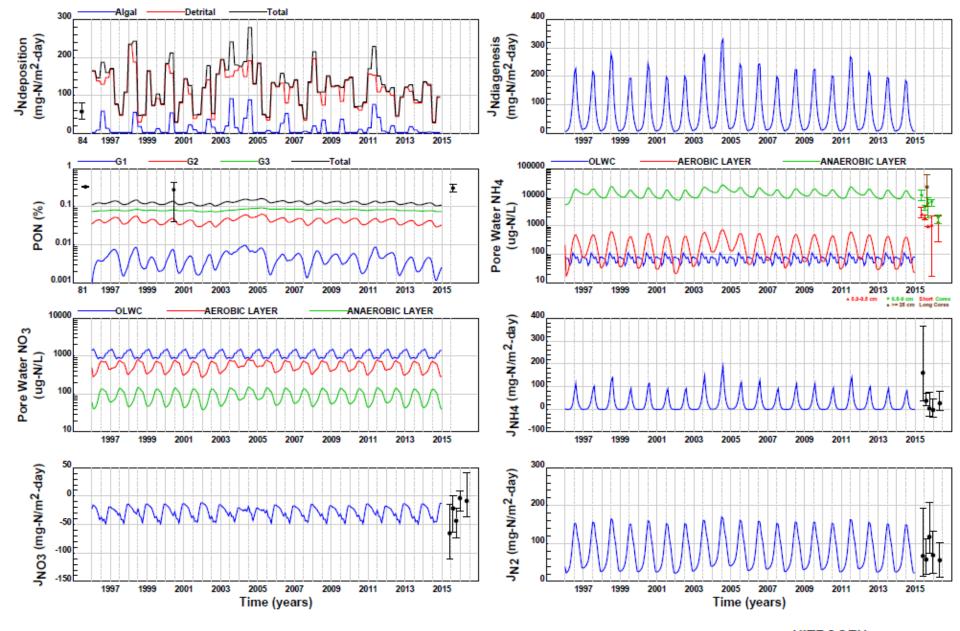

CONOWINGO POND STAND ALONE SFM

10, Kg1=0.010,fG1,fG2


CARBON AND SOD

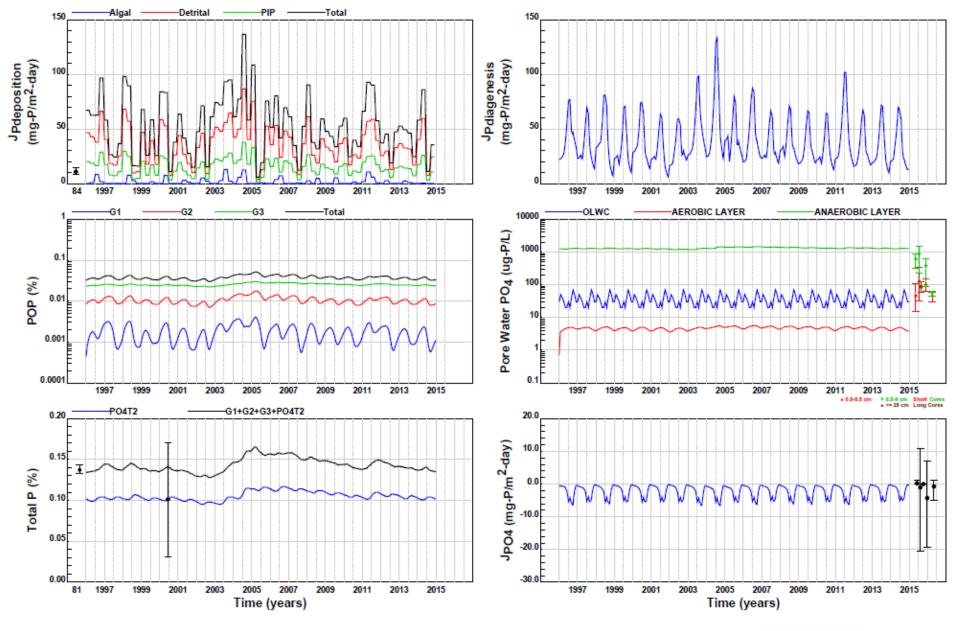
CONOWINGO POND STAND ALONE SFM

NITROGEN


CONOWINGO POND STAND ALONE SFM

NITROGEN

CONOWINGO POND STAND ALONE SFM


10, Kg1=0.010,fG1,fG2

NITROGEN

CONOWINGO POND STAND ALONE SFM

11, Kg1=0.010,fG1,fG2,fG3

PHOSPHORUS

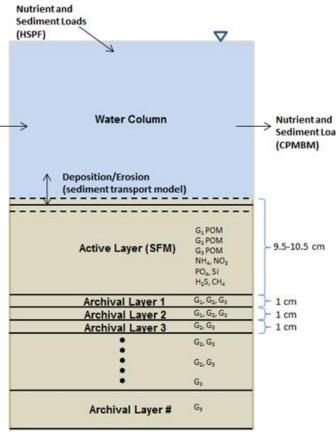
CONOWINGO POND STAND ALONE SFM

05, RUN05

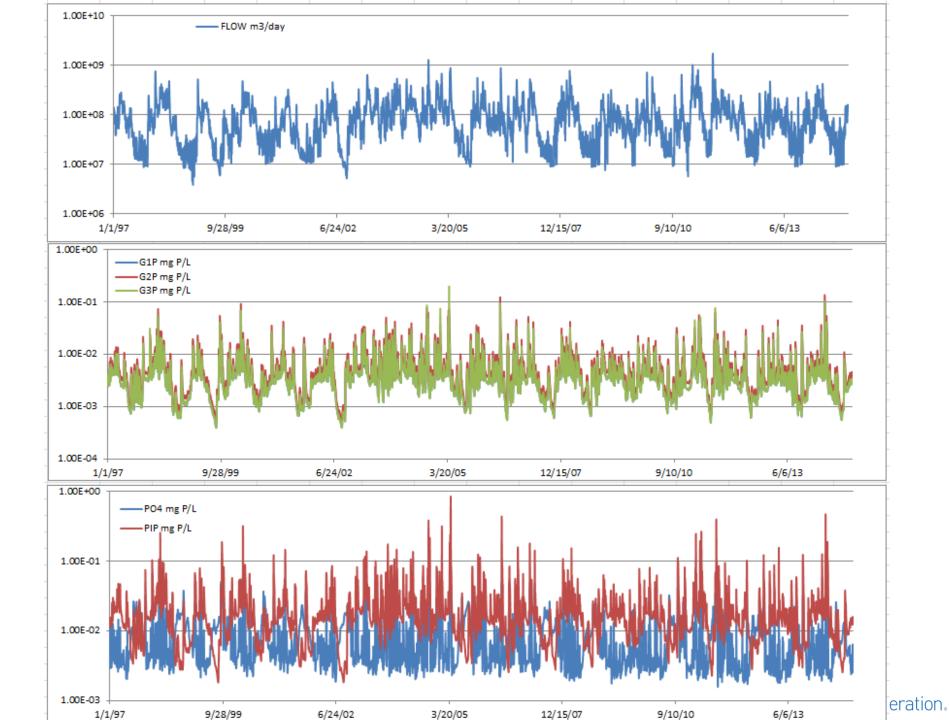
CPMBM - Archive Stack SFM

The water quality portion of the CPMBM uses an archive stack version of the SFM

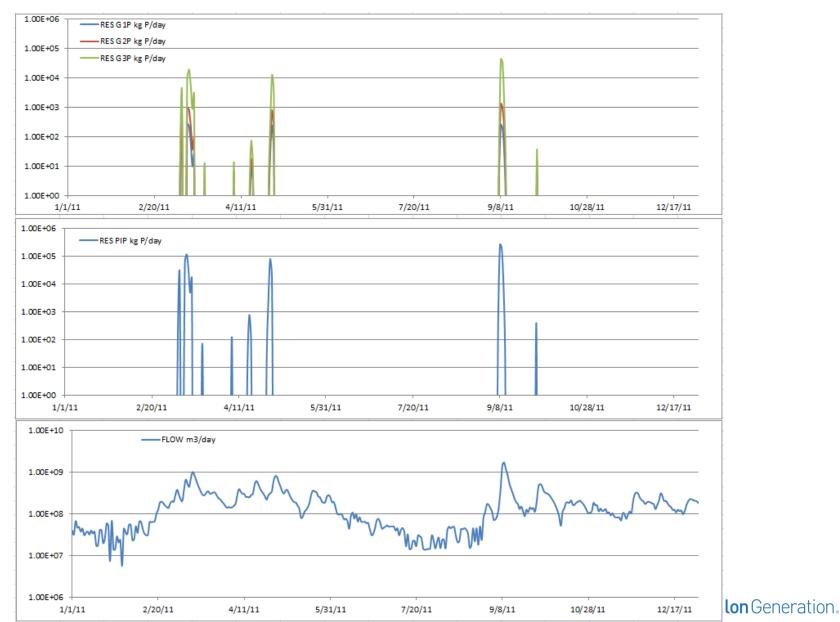
 Provides spatial detail of deposition and resuspension of POM and PIP as well as SFM driven nutrient fluxes


Water column constituents are treated as conservative variables and only consider settling, resuspension and flux of inorganic nutrients

 Information from ECOMSED: ECOM – flow, mixing and temperature; SED – settling velocities of POM based on settling rates of cohesives, resuspension velocities based on gross resuspension of cohesives and noncohesives


 Changes in active layer thickness determined from deposition of cohesives, non-cohesives and particle size bulk densities

ECOMSED information passed to RCA using 15 minute averages


Holtwood flows from ECOMSED with concentrations based on EPA watershed model

Archive Stack SFM

