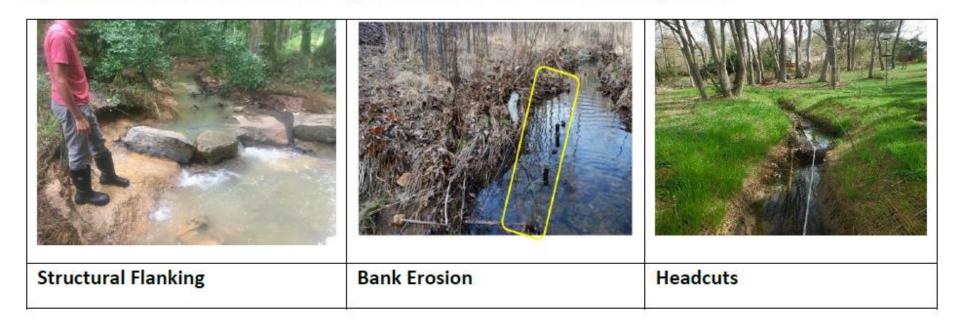
RESILIENT STREAM RESTORATION DESIGN

URBAN STORMWATER WG AND CLIMATE RESILIENCY WG OCTOBER 19, 2021

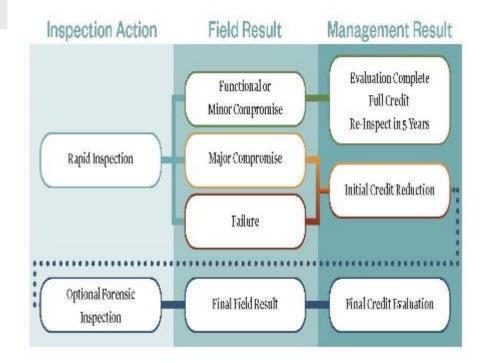
SUMMARY OF CSN MEMO 3 DISCUSSION


STREAM CORRIDOR AND SHORELINE PRACTICES

- Most "online", w/ large CDA
- Designed to withstand floods, not really reduce them

- Vulnerabilities:
 - Structural elements of restorations
 - Increased erosion

Figure 7. Examples of vulnerable design elements for stream restoration practices.


STREAM RESTORATION VULNERABILITIES

- Inaccurate predictions regarding design parameters (width, depth, meander radii, etc.)
- Poor reference site selection
- Design principles have shifted impacts of climate change are still not well understood

Defining Loss of Pollutant Reduction Function for Protocol I			
Criteria for Loss	Key Visual Indicators		
Evidence of bank or bed instability such that the project delivers more sediment downstream than designed,	 Severe bank undercutting (bare earth exposed) Incising bed (bed erosion evident) Flanking or downstream scour of channel structures Failure or collapse of bank armoring practices 		

Protocol 1 Verification Step 2	Status	% Failing *
	Functioning	o to 10% of reach
	Showing Major Compromise	20 to 40% of reach
	Project Failure	50% or more of reach

STREAM RESTORATION WATER QUALITY PERFORMANCE

- Little to no research on pollutant removal changes
- Theoretically there is potential for increased load reductions from prevented sediment and floodplain restoration practices
- Gains could be offset by a single extreme storm event.

TODAY'S PROMPT

If we expect to see a 15-20% increase in the 100 year, 24-hour storm by 2070, what is the impact on:

- Reach sediment loading in the absence of any restoration
- How the higher flows would influence overall project design and feasibility
- Prospects for floodplain reconnection
- The implications for more armoring
- Project longevity and possible sediment/nutrient remobilization

SCOTT AND WARD PRESENTATIONS

MORNING DISCUSSION

Resilient Stream Restoration:

- What are the priority design and maintenance concerns?
- What are the key research questions?
- Is there a need for a STAC workshop, or similar, on the subject?

Projected IDF Curves:

- What comes next in terms of new GCMs, dealing with Atlas 14 updates, and improving temporal resolution?
- Are there high priority next steps for improving the projected IDF curves?

FINAL WRAP-UP

 David will populate with a few priority initiatives and recommendations that emerge from the two days and tee them up for discussion