

Phase 6 Septic System Loads: Nitrogen Attenuation Expert Panel update

November 4, 2015

Victor D'Amato

Septic System Loads (Attenuation Expert Panel)

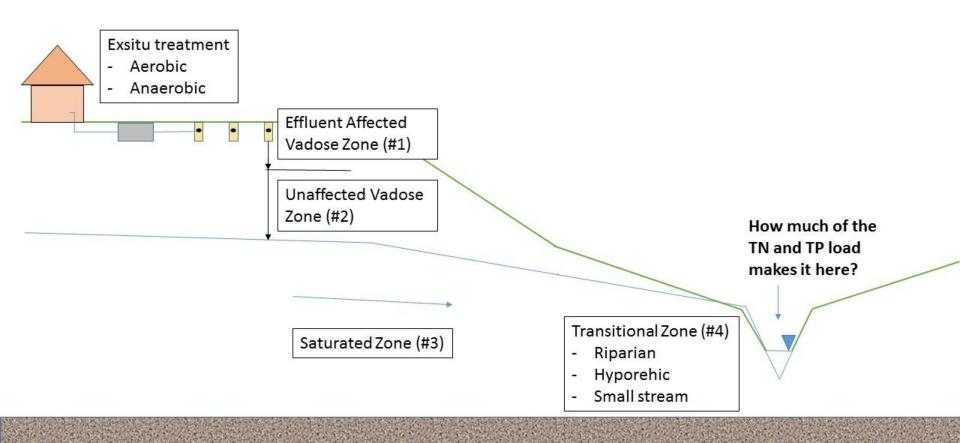
- Background/current status
- Nutrient delivery conceptual framework
- Current attenuation estimates
- Report

Program Background

- Program assumes 5 kg/cap/year TN generated
 - 20% reduction in drainfield
 - 60% attenuation between drainfield and receiving water
 - 100% TP reduction (zero delivery from onsite systems)
- TN reduction credits for pretreatment (exsitu) and improved dispersal (insitu) addressed by previous BMP Panel

Insitu practice	Conventional baseline	Shallow pressure dosed	Elevated mound
Exsitu practice			
Septic tank baseline	4.0 kg/p/yr (0%)	2.5 kg/p/yr (38%)	2.5 kg/p/yr (38%)
Intermittent Filters	3.2 kg/p/yr (20%)	2.0 kg/p/yr (50%)	2.0 kg/p/yr (50%)
Constructed Wetland	3.2 kg/p/yr (20%)	2.0 kg/p/yr (50%)	2.0 kg/p/yr (50%)
IFAS	2.0 kg/p/yr (50%)	1.25 kg/p/yr (69%)	1.25 kg/p/yr (69%)
Recirculating Filter	2.0 kg/p/yr (50%)	1.25 kg/p/yr (69%)	1.25 kg/p/yr (69%)

Conceptual Framework for Attenuation

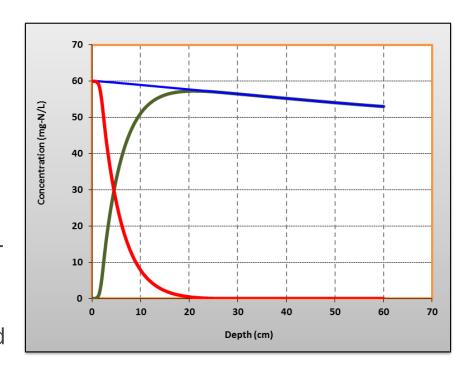


- Focus on amending the assumption of 60% nitrogen removal in conventional systems to be spatially variable
- Vadose Zones (#1 and #2)
 - Starts where effluent is distributed into drainfield: address dispersal/insitu system type
 - Use STUMOD for effluent-affected zone (#1) supplemented with data
 - Unaffected vadose zone (#2) identify areas where denite anticipated
 - Function of soil texture, organic carbon, loading rate, redox conditions, etc.
- Groundwater Zone (#3)
 - Denitrification rate and distance from surface water
 - Consider soil texture, physiographic province, hydrogeology
- Transitional Zones (#4)
 - Identify situations where additional attenuation is expected (e.g., riparian areas, hyporheic zone)
 - Ignore small-stream attenuation: being dealt with by others

Conceptual Framework

Assume: residential wastewater, 5 kg TN/cap/year

Zone 1 Estimation Approach



- Conventional system
- Used STUMOD to determine attenuation rates
 - 12 soil textural classes with hydraulic properties from Rosetta database
- Kept in mind field experiments
 - Bradshaw and Radcliffe (2013) attenuation rates in welldrained clay were about 50%
 - Colorado experiments that sands should be 20-30%
- Assumed that STUMOD could provide differences between soil textures
 - Confirm using USGS SPARROW model empirical, spatiallydifferentiated regression

STUMOD

- Spreadsheet model developed by Mengistu Geza at Colorado School of Mines
- One dimension
- Model space extends from infiltrative surface to bottom of "treatment zone"
- Determines the steady state concentrations of NH₄ and NO₃ in the treatment zone
- Input concentrations are $NH_4 = 60 \text{ mg/L}$ and $NO_3 = 0 \text{ mg/L}$
- Models nitrification and denitrification
 - Both are affected by water-content and temperature
- Assumes an exponential decay distribution of C below infiltration surface
- Can be run with or without plant uptake

Draft Zone 1 Soil Attenuation Factors

Soil textural class	Loading rate (cm/day)	Attenuation	Average
Sand	4	0.07	
Loamy sand	4	0.14	0.17
Sandy loam	3	0.23	
Loam	3	0.22	
Silt loam	1.8	0.60	
Clay loam	1.8	0.59	
Sandy clay loam	1.8	0.30	0.47
Silty clay loam	1.8	0.43	
Silt	1.8	0.41	
Sandy clay	1	0.53	
Silty clay	1	0.66	0.61
Clay	1	0.64	

Proposed Overall Attenuation Factors

Model				Overall	Sand	Loam	Clay
Current Bay model *			68%				
SPARROW	1			66%			
Valeila et	al (2000)			74%			
Proposed w/ Piedmont GW				85%	90%	93%	
Proposed w/ Coastal Plain GW				71%	81%	86%	
		*	to large streams				

- Coastal Plain: TN reduction in groundwater (zone 3) is a function of residence time (distance between system and surface water).
- Piedmont: Residence times typically sufficient with reasonable setbacks.

Additional SPARROW Model Runs

- Use proposed Zone 1 estimates as inputs to SPARROW
 - Determine a "predominant surficial soil texture" for each of the SPARROW catchments using SSURGO, etc.
 - For each catchment, multiply the raw wastewater TN loadings by the appropriate Zone 1 attenuation factor

Objectives

- Better (versus initial SPARROW with septic run) statistical metrics could validate STUMOD-based approach to Zone 1 reductions
- SPARROW outputs could inform Panel understanding of the effect of the Zone 2-4 processes, spatially (empirical Zone 2-4 data is currently quite limited)

Limitations/Assumptions

- Only quantify reductions for conventional septic tank systems
- Only quantify TN (address TP qualitatively)
- Doesn't explicitly address malfunctioning and legacy systems
- Will address systems with BMPs
- Integrate transitional zone efforts with other ongoing ChesBay work

Report Outline

Introduction

- Background
- Historical approach
- Other approaches
- Proposed mechanistic approach
- Challenges and limitations

Methods

- Weight of evidence approach
- Literature
- Modeling
- Hydrogeomorphology

Results and Discussion

- Effluent affected vadose zone
- Unaffected vadose zone
- Groundwater zone
- Transitional zones
- Conclusions and Recommendations
- References

Look for report to be released in Spring 2016

Acknowledgements

- David Radcliffe, University of Georgia
- Mike O'Driscoll, ECU
- Lew Linker, Scott Ator (USGS), Guido Yactayo
- Ning Zhou, David Wood
- "Attenuation Expert Panel"
- WWTWG

Victor D'Amato 919-485-2070 victor.damato@tetratech.com