FIAlab Instruments Inc.

Fluidics Intelligently Automated

HELLO!

I am Scott Schroeder
National Sales Manager
You can find me at scott@flowinjection.com
Home Office (262-670-1389) Cell (206-619-6705)

THEY LOVE FLOW INJECTION

Fluidics Intelligently Automated

FIAlab Instruments has perhaps the strongest roots in flow injection out there. The inventor of these techniques (J. Ruzicka) founded FIAlab in 1987. For over 30 years now, we have remained on the cutting-edge of these techniques and have significantly improved these technologies.

FIAlab Improvements over Continuous Flow Analyzers

- Size-Bench Space Critical
- Backup for Lab (redundancy)
- > Full Array Spectrometer
- ➤ Pump Control (FIA)
- Method Improvements (Hardware/Software/Chemistry)
- Significant Reduction in cost of operation

EXTREMELY SMALL SIZE 25 cm X 15.2 cm

Fluidics Intelligently Automated

60 cm X 25 cm X 50 cm
Reagents 5 cm (actual space 10cm)

SIMULTANEOUSLY RUN MULTIPLE ANALYTES =8

Fluidics Intelligently Automated

Ammonia/TKN all on 1 Channel no switchover either FIA100 or EPA 350.1/351.2 NO3+NO2 353.2

UNIQUE FLEXIBILTIY WITH LITTLE ADDED COST

- **FLEXIBILITY**
- Add Autosampler and Software license SPLIT
- TWO WORKSTATIONS
- **THREE WORKSTATIONS**

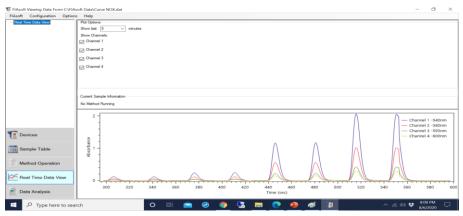
HIGH END SPECTROMETER IN FIA1000

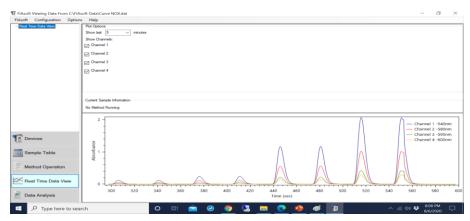
Fluidics Intelligently Automated

Flame Spectrometer

The Flame Spectrometer is built using industry-leading manufacturing techniques that help deliver high thermal stability and low unit to unit variation- without compromising the flexibility and configurability that are the hallmark of Ocean Insight's miniature spectrometers. New features such as interchangeable slits, indicator LEDs, and simple device connectors deliver more freedom and less frustration.

Whether you are a research lab looking to make a breakthrough, or an engineer working to integrate a spectrometer into an OEM system, the Flame will provide you with the performance and features you need to make your UV-Vis spectroscopy application successful.




ALL WAVELENGTHS SIMULTANEOUSLY

Fluidics Intelligently Automated

Ammonia NO3+NO2

SOFTWARE CONTROLLED ISMATEC PUMP

Fluidics Intelligently Automated

FL-1000 Pump

The FL-1000 pump features a planetary drive for less pulsation and longer tubing life. The eight SS rotors provides smooth rotation and accurate liquid flow. This pump requires fewer tubing changes and can handle flow rates of 0.002 to 44 mL/min per channel. Flow rates depend on drive rmp and tubing size. See page XX for a complete list of FIAlab's pump tubing. The FL-1000 pump is simple to use and includes automatic occlusion cartridges, which provide reproducible results.

Pump Extensions

The FL-1000 pump can be extended up to 8 channels to accommodate multple chemistries.

Fluorometric Ammonia & TKN

Alkalinity														
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes						
ALK-W-1-1	1 10	50 500	0.3 3	g CaCO3 /L	50	Waters	EPA 310.2	Methyl Orange method.						
Ammonia														
Method number	Lower	Upper	MDL	Units	Sample / Hour	Matrix	Compliant With	Notes						
NH3-S-1-1	0.02 0.075	0.5 50	0.006 0.025	mg N / L as NH3	120	Soil extracts	N/A	Salicylate method for soil extracts.						
NH3-W-1-2	0.5	20	0.1	mg N / L as NH3	60	Waters	EPA 350.1	Salicylate method with gas diffusion.						
NH3-W-1-4	0.5	20	0.1	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Salicylate or phenate method with gas diffusion.						
NH3-W-2-1	0.05	0.5	0.02	mg N / L as NH3	60	Waters	EPA 350.1	Salicylate or phenate method with gas diffusion, utilizing low noise detector.						
NH3-W-2-3	0.05	0.5	0.02	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Salicylate or phenate method with gas diffusion, utilizing low noise detector.						
NH3-W-2-5	0.006	1	0.002	mg N / L as NH3	60	Waters	SM 4500- NH3 H.	Salicylate or phenate method, utilizing low-noise detector.						
NH3-W-3-2	0.05	10	0.012	mg N / L as NH3	60	Waters	EPA Rec.	OPA method with gas diffusion, utilizing fluorometric detector.						

Gas Diffusion works well Ammonia

LESS REAGENT CONSUMPTION & WASTE GENERATION

Chemistry	Lachat method	Standard Method	Fialab method	Low	High	units	Lachat	FIAlab
Nitrate/Nitrite	10-107-04-1-C	4500-N03-I	NO3-W-20-2	0.2	2	mg/L		
Nitrate/Nitrite		4500-N03-I		0.2	2	mg/L		
Chemical	Chem Formula	Regent	Reagent Name		prepare			
Ammonium chloride	NH4Cl		1	1.6 M Amm	onium Chloride Buffer (1 L)	3 months	3.07	1.925
Sodium Hydroxide	NaOH		2	Sulfanilamide Solution (1 L)		Monthly	0.94	0.94
Ethylenediaminetetraacetic acid disodium salt dihydrate	C10H14N2Na2O8 · 2H2O							
Sulfanilamide	H2NC6H4SO2NH2		3	Carrier Water or 2 ml H2SO4/L/4ml FIA			1.28	0.77
Phosphoric acid, 85%	H3PO4		Total (ml)/minute			5.29	3.635	
N-1-Naphthylethylene diamine dihydrochloride	C10H7NHCH2CH2NH2 · 2HCl							
Brij® L23, 30% solution	CH3(CH2)10CH2(OCH2CH2)nC		Waste comparison Reduction of waste approximately 30%					
Sulfuric acid (36N)	H2SO4							

FLOW CELLS

Fluidics Intelligently Automated

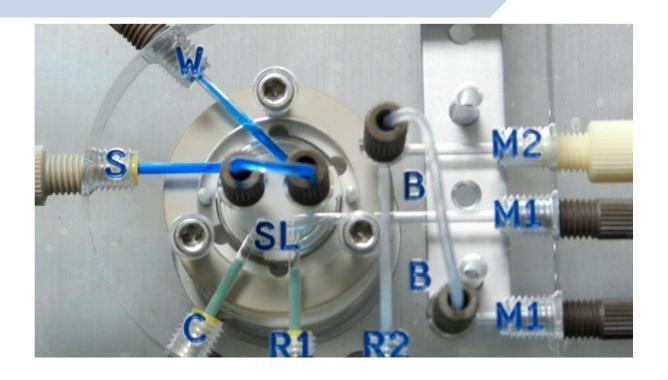
STS Series Spectrometers Ocean Optics

Flow Cells

Professionally machined. Carefully measured. Proudly made in the USA. These flow cells come in a wide range of materials and lengths to satisfy your detection limits and withstand your reagents. Normal and micro-volumes are available.

Products Include:

- SMA-Z Flow Cells 100um to 100mm optical length
- Long Path 50 cm optical path
- Dialysis and gas diffusion cells


Assorted flow cells

Materials Available:

- Plexiglas
- Ultem - Teflon
- Stainless Steel
- Peek
- COP

LAB ON VALVE DESIGN

DEMO TIME

Conclusions

Fluidics Intelligently Automated

THANK YOU!