

Objectives

Report on assessment of fish habitat condition for all non-tidal reaches in the Chesapeake Bay watershed

Get feedback and thoughts on web interface tool to

present results

https://doi.org/10.1016/j.ecolind.2021.108488

History of Assessment Project

FHAT needed an assessment of fish habitat for the watershed

- Recognized national efforts (NFHP) were limited
- More relevant information is available for the watershed
- USGS/NOAA inventoried available data and developed concepts
- 2018 Workshop presented ideas and gather feedback

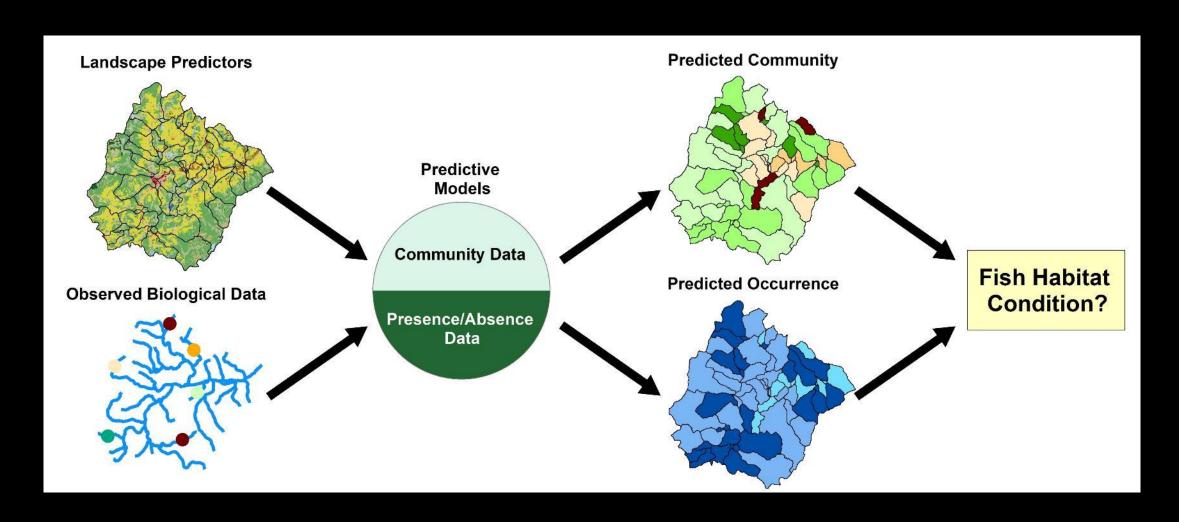
Factors Influencing the Headwaters, Nontidal, Tidal, and Mainstem Fish Habitat Function in the Chesapeake Bay Watershed: Application to Restoration and Management Decisions

History of Assessment Project

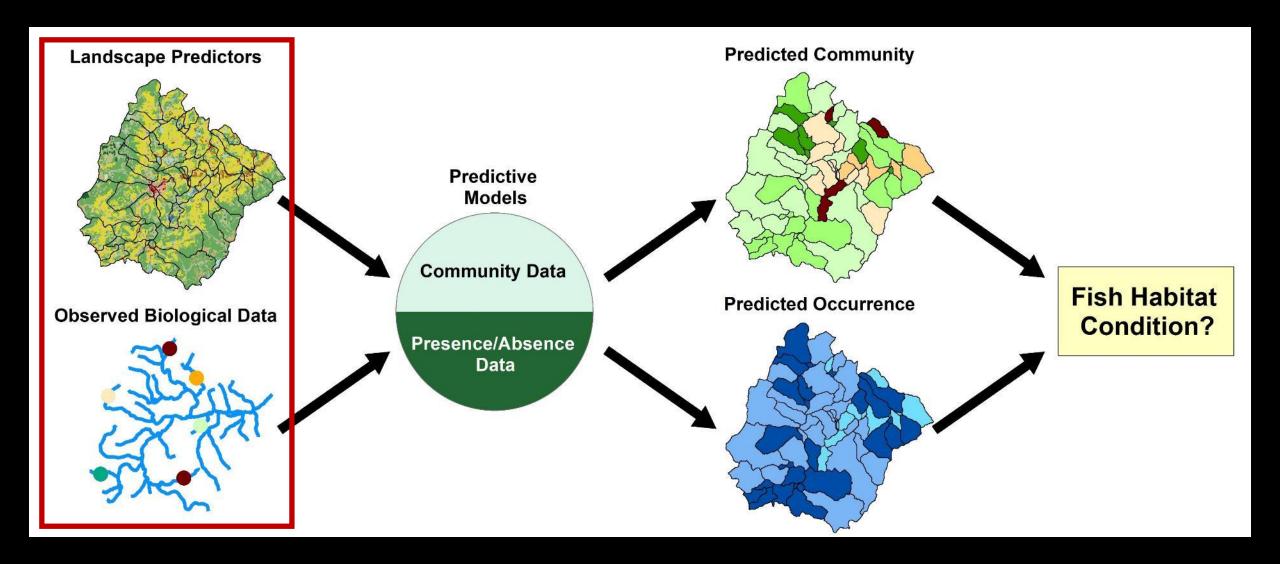
Critical recommendations from 2018 Workshop

- Eventual assessment a fine spatial scale (1:24,000 map scale)
- Data gathering (2018-2019)
- Outreach and Training (2018-present)
- Assessment metrics (2021)
- Pilot assessment (Patuxent 2022-2023)
- Research (communicate research needs)

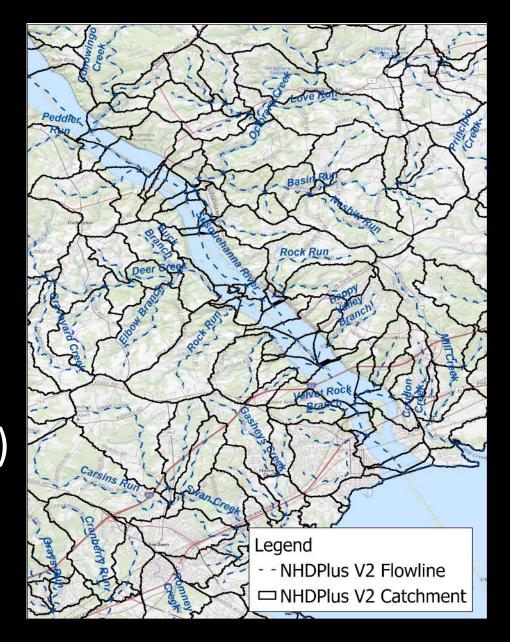
Factors Influencing the Headwaters, Nontidal, Tidal, and Mainstem Fish Habitat Function in the Chesapeake Bay Watershed: Application to Restoration and Management Decisions



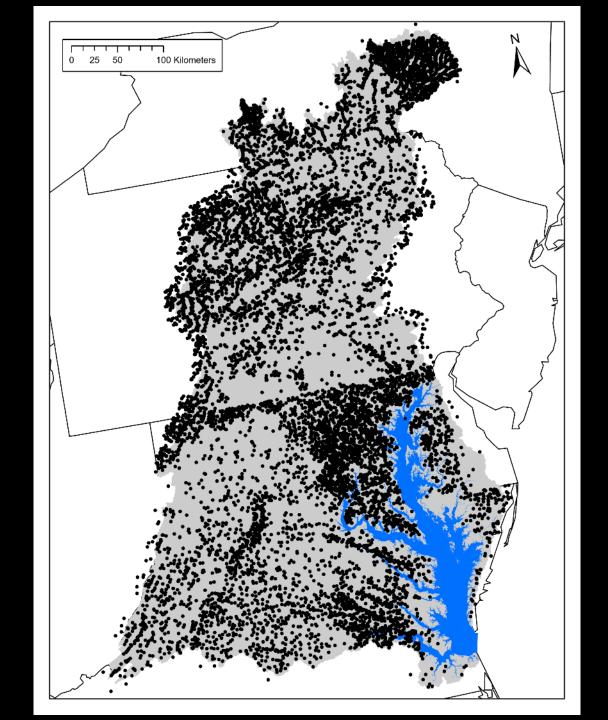
Non-tidal Assessment: Two main approaches

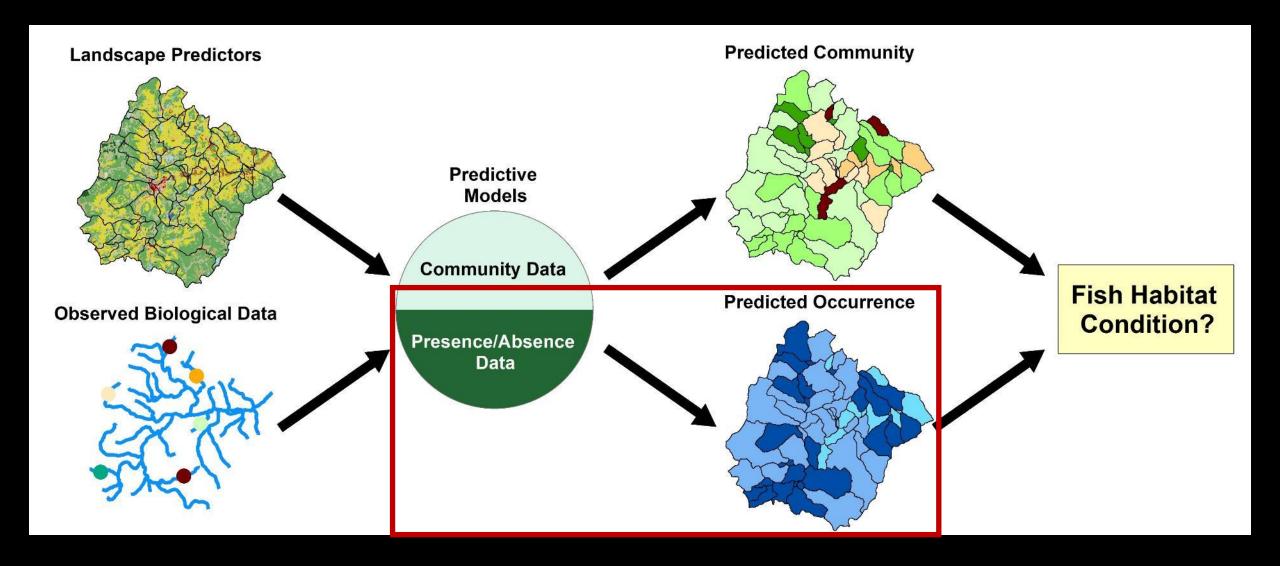

	Community	Species
	Metrics often rolled into multimetric indices	Key species or set of species
	Represents community - richness, diversity, abundance and functional aspects	Single or few species
Strength	Useful for overall condition	Detailed insight into key species
	Limited insight into	Limited evaluation of overall
Weakness	individual species	condition

Non-tidal Assessment: Integrated approach



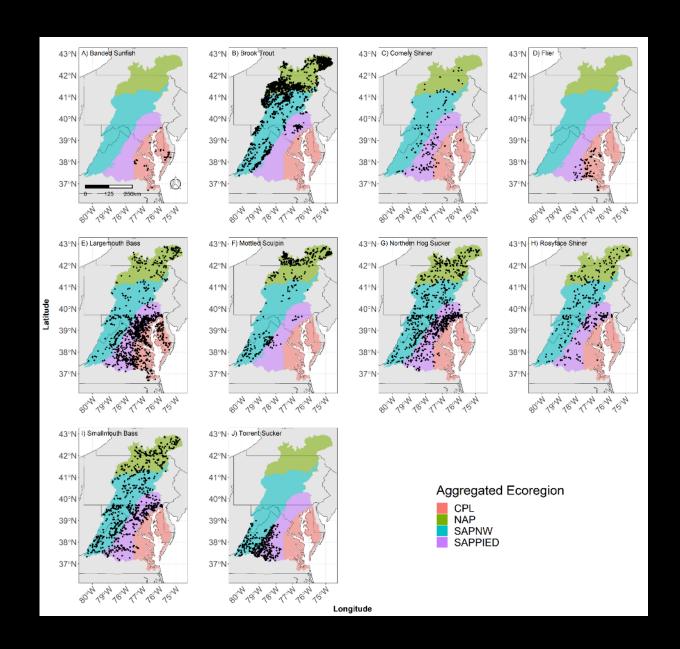
Data


- 56 uncorrelated landscape predictors (upstream accumulated)
 - LULC, climate, topography, geology, soils, human impact
 - From US EPA StreamCat (Hill et al. 2016) and USGS NAWQA (Wieczorek et al. 2018)
- 1:100,000 map scale (NHDPlus v2.1)
 - Next move to 1:24,000 as data become available



Non-Tidal Fish Database

- Over 20 separate data sources/sampling programs
- Over 30,000 sampling events
- Summary metrics used by NRSA (EPA, 2020), NFHP (2016), and others of interest calculated for Community samples (Krause and Maloney 2021)
- Spatially linked samples to NHDPlus V2.1 where appropriate (Krause et al. 2021)



Methods - Species

- Examined species if:
 - > 100 occurrences
 - USEPA identified as sensitive or were gamefish of interest
- Random forest models built for each species
- Modeling extent set by native range and habitat size
- Models for species selected if:
 - Kappa and TSS >0.40 (training and test)
 - Specificity and sensitivity >0.70 (training and test)

Results – 4 Species met all criteria

Brook Trout (Salvelinus fontinalis)

Карра	Sens.	Spec.	TSS
0.85	0.91	0.94	0.86

Northern Hog Sucker (Hypentelium nigricans)

Kappa Sens. Spec. TSS

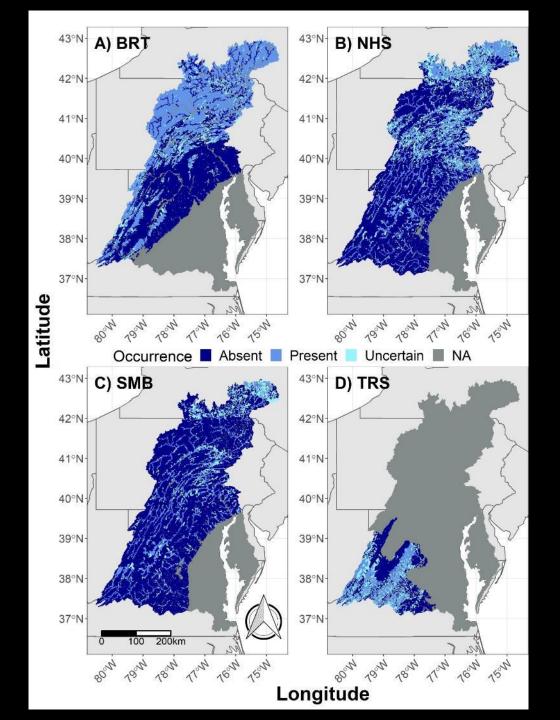
0.58 0.80 0.81 0.61

Smallmouth Bass (*Micropterus dolomieu*)

Карра	Sens.	Spec.	TSS
0.71	0.74	0.94	0.68

Torrent Sucker (Thoburnia rhothoeca)

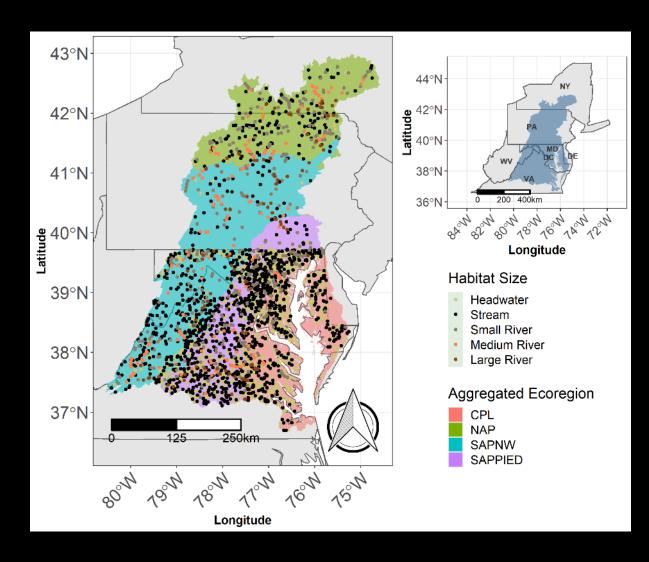
II S Fish and Wildlife Service

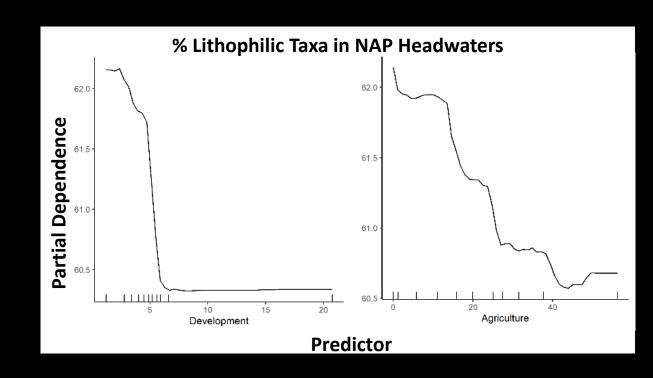

		Spec.	
0.54	0.82	0.72	0.54

Predicted probability of occurrence (present, absent, uncertain) to unsurveyed reaches (2001, 2006, 2011, 2016)

Results – Species (2016 only)

- Brook Trout (BRT) predicted to smaller systems in the NAP and SAPNW
- Northern Hog Sucker (NHS) predicted for most stream sizes in CBW except CPL
- Smallmouth Bass (SMB) predicted for small to large rivers in CBW except CPL
- Torrent Sucker (TRS) predicted for smaller habitats in HUC8 in the southwest portion

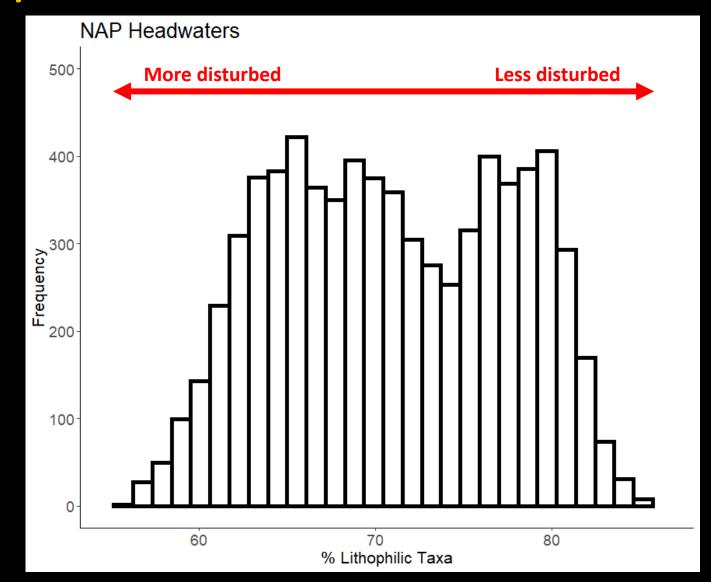




- Separate analyses by aggregated ecoregion
- Evaluated > 200 metrics
- Unable to develop MMI
- Random forest models built for metrics with sufficient range and variability (screening criteria used by USEPA 2020)

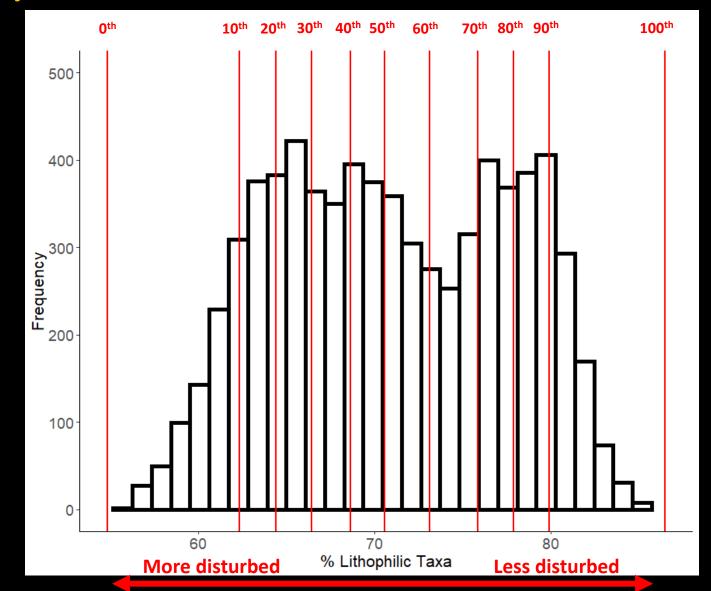
- Separate analyses by aggregated ecoregion
- Evaluated > 200 metrics
- Unable to develop MMI
- Random forest models built for metrics with sufficient range and variability (screening criteria used by USEPA 2020)
- Selected metrics for ecoregion if:
 - Metric was uncorrelated
 - Model had R² > 0.40 (training and test)
 - Relationships with development and agriculture were "uni-directional"
- Predicted metrics to unsurveyed reaches (based on 2001, 2006, 2011, 2016 LULC)

Results - Community


7 metrics in SAPNW, 3 in SAPPIED, 5 in CPL, and 14 in NAP

_			Num.	, ;			Pattern with	Pattern with
Region	·						Development	Agriculture
SAPNW	Number of intolerant lotic taxa	585	47	0.48	147	0.52	↓ to →	\downarrow to \rightarrow
	Number of distinct intolerant taxa	585	47	0.48	147	0.52	↓ to →	\downarrow to \rightarrow
	Number of native Cyprinidae taxa	585	47	0.49	147		↑ to →	\uparrow
	% native taxa as intolerant lotic	585	47	0.41	147	0.42	↓ to →	\downarrow to \rightarrow
	% Intolerant native taxa	585	47	0.41	147		\downarrow to \rightarrow	\downarrow to \rightarrow
	% native taxa as intolerant rheophilic	585	47	0.45	147	0.43	↓ to →	\downarrow to \rightarrow
	Number of distinct Tolerant taxa	585	47	0.62	147	0.61	↑	\uparrow
SAPPIED	% large river taxa	1108	51	0.52	278		rapid \uparrow to \rightarrow to \downarrow at extremes	rapid ↑ then slow ↓
	Number of native rheophilic taxa	1108	51	0.52	278	0.53	\uparrow	\uparrow
	Number of distinct Tolerant native taxa	1108	51	0.49	278	0.49	rapid ↓ to ↑	↑
CPL	Number of lithophilic taxa	687	49	0.53	172	0.60	↑	↑
	Number of lotic taxa	687	49	0.46	172	0.56	\uparrow	\uparrow
	Number of native benthic invertivore taxa	687	49	0.43	172	0.41	↑	\uparrow
	Number of native Cyprinidae taxa	687	49	0.53	172	0.63	↑	rapid ↓ then ↑
	Number of distinct Tolerant taxa	687	49	0.41	172	0.51	↑	\uparrow

			Num.					
		Trai	ind.	R2	Test	R2	Pattern with	Pattern with
Region	Metric description	n n	vars.	(OOB)	n	Test	Development	Agriculture
NAP	Number of Cyprinidae taxa	252	44	0.43	63	0.56	↑	\uparrow
	% lithophilic taxa	252	44	0.46	63	0.53	\	\
	% large river taxa	252	44	0.73	63	0.74	↑	\uparrow
	Number of native benthic invertivore taxa	252	44	0.51	63	0.58	↑	↑
	% native individuals as Centrarchidae	252	44	0.55	63	0.47	↑	↑
	% native individuals as coldwater	252	44	0.72	63	0.56	V	\downarrow to \rightarrow to \uparrow at extremes
	% native individuals as intolerant rheophilic	252	44	0.47	63	0.43	\	\downarrow
	Number of native invertivores taxa	252	44	0.44	63	0.57	↑	\uparrow
	Number of native lotic taxa	252	44	0.50	63	0.57	↑	↑
	Number of native non- tolerant benthic taxa	252	44	0.48	63	0.64	↑	↑
	% native individuals as rheophilic	252	44	0.45	63	0.56	V	↓ to slight ↑ to ↓
	% native taxa as rheophilic	252	44	0.57	63	0.60	\	\downarrow
	% native taxa as salmonid	252	44	0.65	63	0.81	\downarrow to \rightarrow to light \uparrow	\downarrow to \rightarrow to \uparrow at extremes
	Number of distinct Tolerant taxa	252	44	0.48	63	0.53	↑	\uparrow



- Unable to develop MMI
- Developed different method:
 - Metric relationship with development and agriculture
 - Binned each metric into deciles (within habitat size class)
 - <10th decile = lowest metric values
 - >90th decile = highest metric values

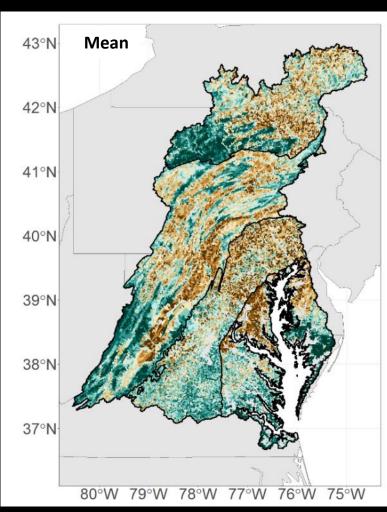
- Unable to develop MMI
- Developed different method:
 - Metric relationship with development and agriculture
 - Binned each metric into deciles (within habitat size class)
 - <10th decile = lowest metric values
 - >90th decile = highest metric values

- Unable to develop MMI
- Developed different method:
 - Metric relationship with development and agriculture
 - Binned each metric into deciles (within habitat size class)
 - <10th decile = lowest metric values
 - >90th decile = highest metric values
 - Calculate mean of decile scores across suitable metrics
 - Used as condition indicator

Lower mean deciles = poorer relative condition Higher mean deciles = better relative condition

Reach mean metric decile = 40th-50th

Region	Metric description	Decile	Decile position
NAP	Number of Cyprinidae taxa	$20^{th} - 30^{th}$	3
	% lithophilic taxa	$40^{th} - 50^{th}$	5
	% large river taxa	$20^{th} - 30^{th}$	3
	Number of native benthic invertivore taxa	$20^{th} - 30^{th}$	3
	% native individuals as Centrarchidae	$60^{th} - 70^{th}$	7
	% native individuals as coldwater	$70^{th} - 80^{th}$	8
	% native individuals as intolerant rheophilic	$40^{th} - 50^{th}$	5
	Number of native invertivores taxa	$50^{th} - 60^{th}$	6
	Number of native lotic taxa	$50^{th} - 60^{th}$	6
	Number of native non-tolerant benthic taxa	$40^{th} - 50^{th}$	5
	% native individuals as rheophilic	$50^{th} - 60^{th}$	6
	% native taxa as rheophilic	$40^{th} - 50^{th}$	5
	% native taxa as salmonid	$40^{th} - 50^{th}$	5
	Number of distinct Tolerant taxa	$70^{th} - 80^{th}$	8



Results – Community (2016 only)

Mean of metric deciles for each aggregated ecoregion

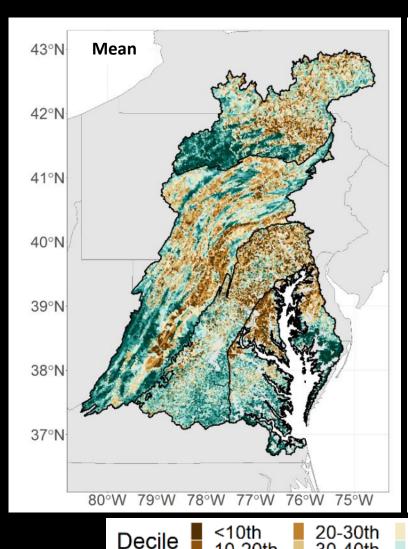
Lower deciles = poorer relative condition

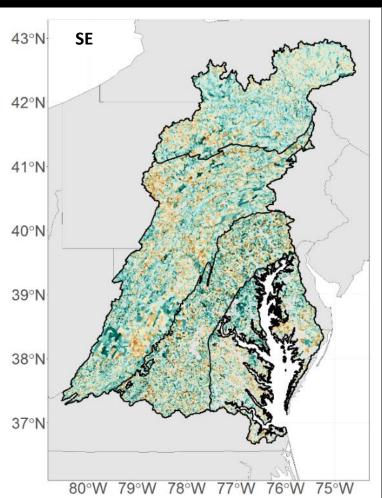
Higher deciles = better relative condition

Decile <10th 20-30th 30-40th 50-60th 60-70th 70-80th

80-90th

>90th




Results – Community (2016 only)

Mean of metric deciles for each aggregated ecoregion

Lower deciles = poorer relative condition

Higher deciles = better relative condition

80-90th

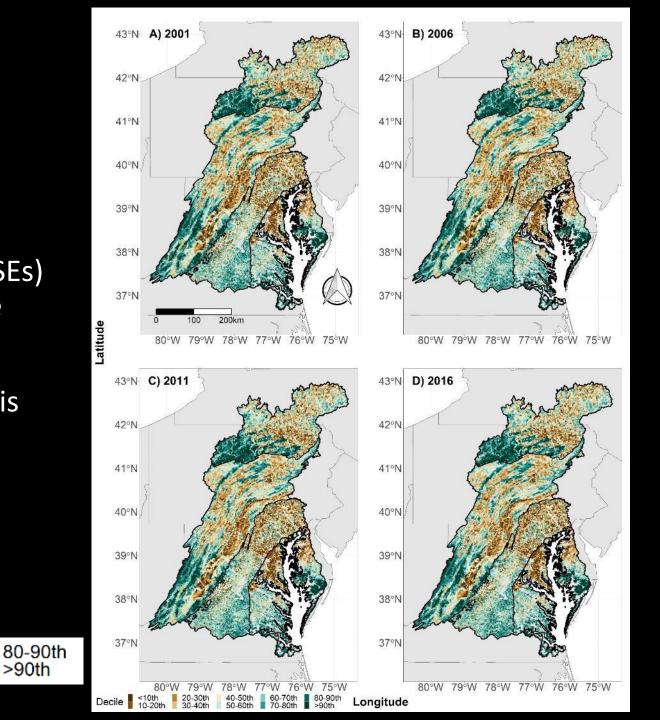
40-50th

30-40th

Mean standard error of metric deciles for each aggregated ecoregion

Lower deciles = lower SE

Higher deciles = higher SE

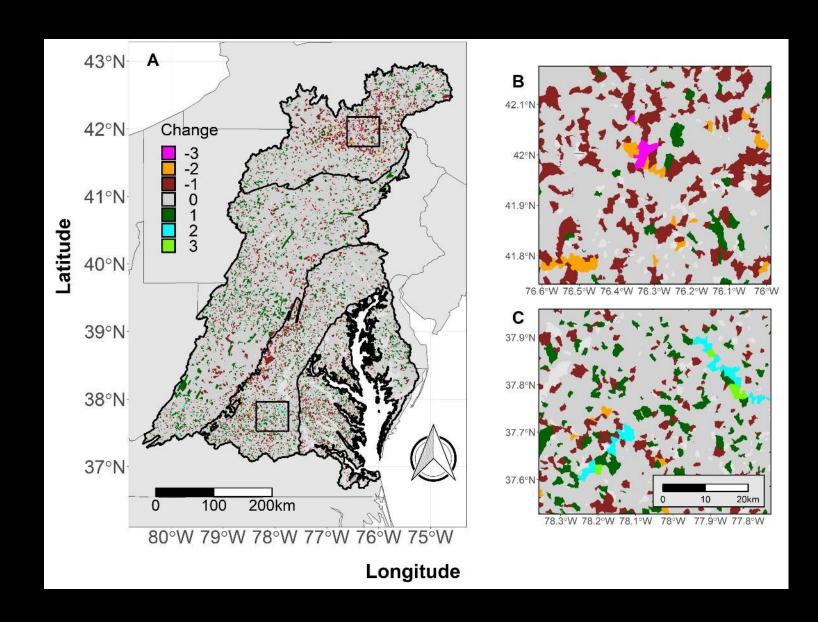


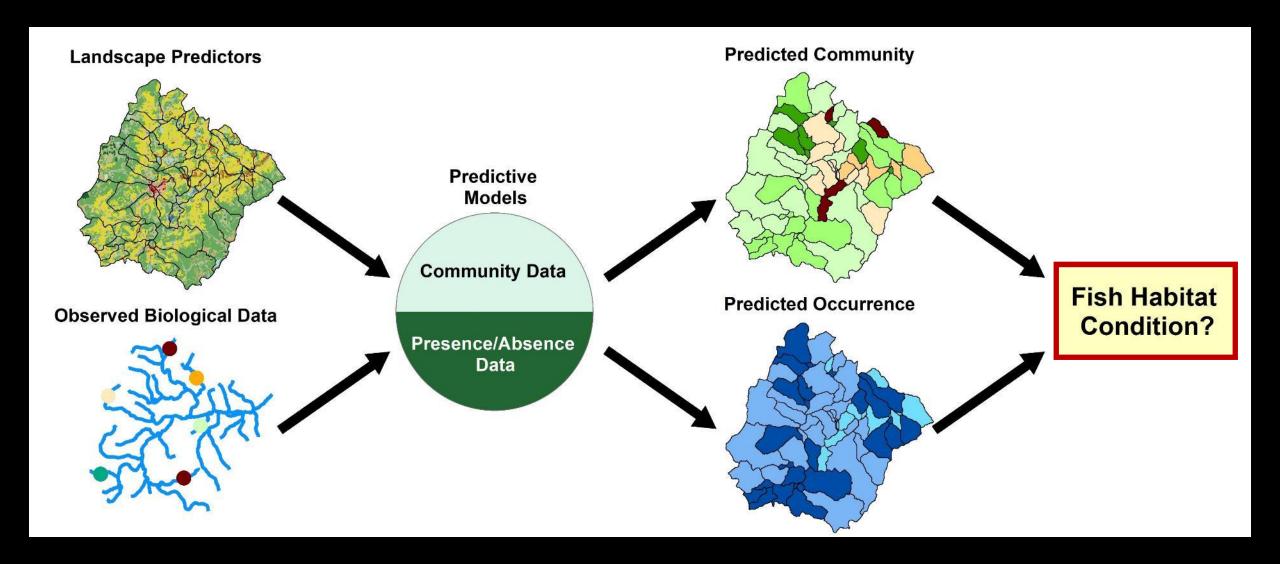
Results – Community (4 years)

Have predicted values and uncertainty (SEs) for 4 periods where NLCD were available

Allows a change between periods analysis

>90th

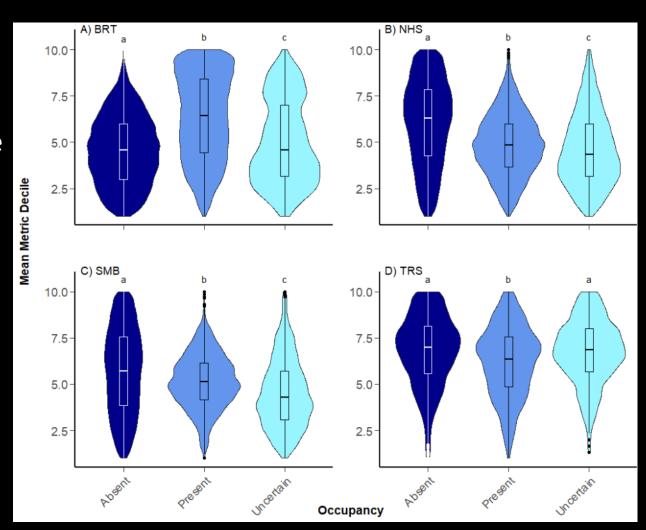



Results - Community

Change 2001 to 2016:

- When displayed spatially results can be used to identify locations with changes
- Those with a large positive change may be areas that have responded to management actions (future research need)
- Those with large negative changes may be areas requiring better management or restoration

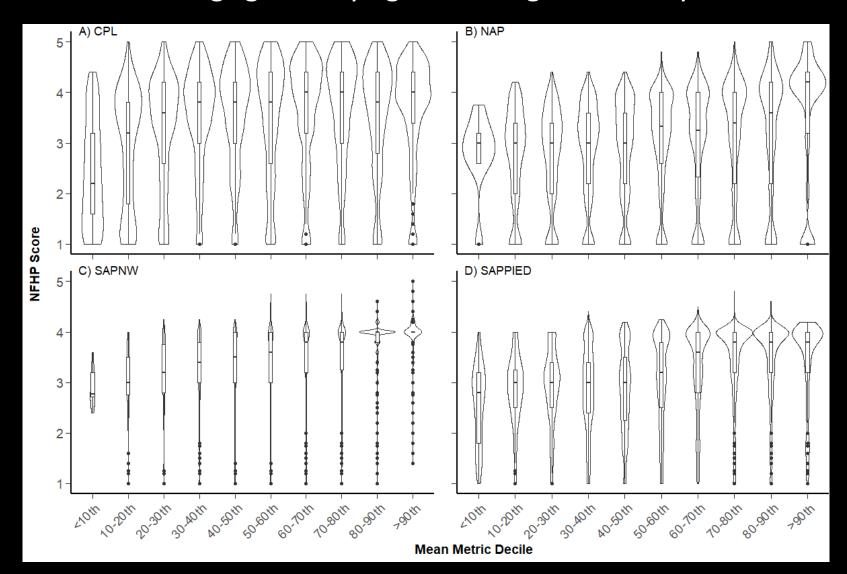
Results – Community vs. Species


- Do community and species predictions align?
 - Expect mean metric decile and sensitive species to align

	Community	Species
Measure	Metrics often rolled into multimetric indices	Key species or set of species
Breadth	Represents community - richness, diversity, abundance and functional aspects	Single or few species
Strength	Useful for overall condition	Detailed insight into key species
Weakness	Limited insight into individual species	Limited evaluation of overall condition

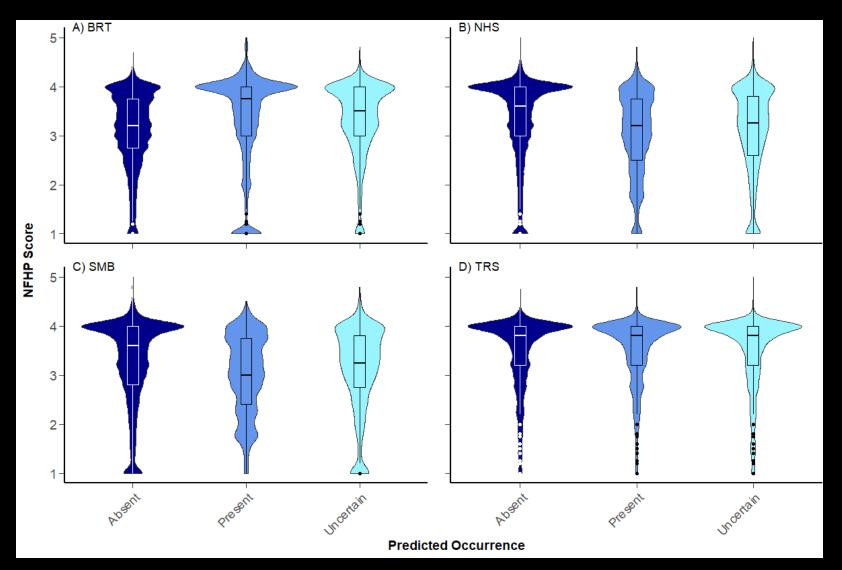
Results – Community vs. Species

- Do community and species predictions align?
 - Expect mean metric decile and sensitive species to align
- Brook Trout predicted presences were in reaches with a higher mean deciles
- All other three species showed opposite pattern with predicted presences being higher in reaches with lower mean deciles



Comparison to NFHP

Community vs NFHP


Mean decile and NFHP ratings generally agree but high variability

Species vs NFHP

Brook Trout (BRT) agrees with NFHP, other sensitive species do not, all show high variability

Summary

- Examined individual species habitat suitability
- Developed approach to identify habitat condition for 4 regions based on community metrics and mean deciles
- Community and species levels agreed for one sensitive species (Brook Trout); other two species may be less sensitive than USEPA suggests
- Using both approaches simultaneously may offer more insight into reach conditions
- Results from both approaches generally agree with the NFHP, but lots of variability was found

Future Work

- Migrate to a 1:24,000 map scale framework
- Investigate finer resolution land use (e.g., 1 m) and summarization methods (e.g., distance-weighting)
- Incorporate future climate and land use scenarios

Future Work

- Migrate to a 1:24,000 map scale framework
- Investigate finer resolution land use (e.g., 1 m) and summarization methods (e.g., distance-weighting)
- Incorporate future climate and land use scenarios
- Develop a data visualization web-based application

Request feedback on development of this application to increase usefulness/relevance

Data Visualization

 Static Storymap – only narrative with embedded figures and tables

Endocrine Disrupting Compounds in the Chesapeake (arcgis.com)

 Interactive Dashboard – users can query and select data that figures and tables display

EcoSHEDS | USGS

Acknowledgements

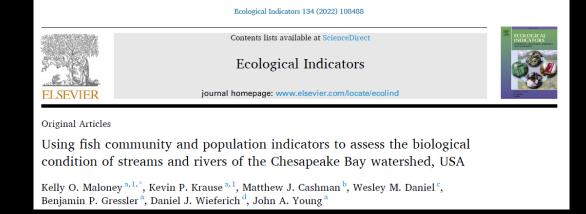
- Thank you to data providers
- Thank you to Karen Blocksom (EPA)
- Thank you to Stephen
 Faulkner and Richard Walker
 (USGS Chesapeake Regional Assessment Team)
- Support was provided by the USGS Fisheries Program and the Chesapeake Bay Program

The following programs provided data for the Fish Database:

- New York Department of Environmental Conservation
- Pennsylvania Department of Environmental Protection
- Pennsylvania Fish and Boat Commission
- West Virginia Department of Environmental Protection
- West Virginia Department of Natural Resources
- Maryland Department of the Environment
- Maryland Department of Natural Resources; Resource Assessment Service
- Maryland Department of Natural Resources; Fishing and Boating Services
- Anne Arundel County (MD) Department of Public Works
- > Baltimore County (MD) Department of Environmental Protection and Sustainability
- > Frederick County (MD) Sustainability and Environmental resources
- Howard County (MD) Storm Water Management Division
- Montgomery County (MD) Department of Environmental Protection
- Virginia Department of Game and Inland Fish
- Virginia Commonwealth University
- Virginia Department of Environmental Quality
- Fairfax County (VA) Department of Public Works & Environmental Sciences
- National Parks Service Shenandoah National Park
- Susquehanna River Basin Commission
- United States Environment Protection Agency
- United States Geological Survey

Thank you!

Contact Information:


Assessment of fish habitat:

Kelly Maloney (kmaloney@usgs.gov)

Kevin Krause (kkrause@usgs.gov)

Data Visualization:

Kelly Maloney (kmaloney@usgs.gov)
Stephanie Gordon (sgordon@usgs.gov)

https://doi.org/10.1016/j.ecolind.2021.108488

Data releases: http://dx.doi.org/10.5066/P9D6JU4X
http://dx.doi.org/10.5066/P9C1PX4P

Science Summary:

Assessing the habitat conditions to support freshwater fisheries in the Chesapeake Watershed | U.S. Geological Survey (usgs.gov)