Comparison of Methods for Estimating Poultry Manure Nutrient Generation in the Chesapeake Bay Watershed

Jim Glancey, Bill Brown & Jennifer Volk
University of Delaware

Sec. Ed Kee, Mark Davis & Larry Towle Delaware Department of Agriculture

Jennifer Timmons University of Maryland

Jen Nelson
USDA NRCS Maryland

ASAE Standard, 2003

Table 2 - Fresh manure production and characteristics per 1,000 lb live animal mass per day

			Animal Type [†]										
Parameter	Units*		Dairy	Beef	Veal	Swine	Sheep	Goat	Horse	Layer	Broiler	Turkey	Duck
Total manure [‡]	lb	mean [§] std. deviation	86 17	58 17	62 24	84 24	40 11	41 8.6	51 7.2	64 19	85 13	47 13	110
Urine	lb	mean std. deviation	26 4.3	18 4.2	**	39 4.8	15 3.6	**	10 0.74	**	**	**	**
Density	lb/ft ³	mean std. deviation	62 4.0	63 4.7	62 **	62 1.5	64 4.0	63 **	63 5.8	60 2.4	63 **	63 **	**
Total solids	lb	mean std. deviation	12 2.7	8.5 2.6	5.2 2.1	11 6.3	11 3.5	13 1.0	15 4.4	16 4.3	22 1.4	12 3.4	31 15
Volatile solids	lb	mean std. deviation	10 0.79	7.2 0.57	2.3	8.5 0.66	9.2 0.31	**	10 3.7	12 0.84	17 1.2	9.1 1.3	19 **
Biochemical oxygen demand, 5-day	lb	mean std. deviation	1.6 0.48	1.6 0.75	1.7 **	3.1 0.72	1.2 0.47	**	1.7 0.23	3.3 0.91	**	2.1 0.46	4.5 **
Chemical oxygen demand	lb	mean std. deviation	11 2.4	7.8 2.7	5.3 **	8.4 5.3	11 2.5	**	**	11 2.7	16 18	9.3 1.2	27 **
pH		mean std. deviation	7.0 0.45	7.0 0.34	8.1 **	7.5 0.57	**	**	7.2 **	6.9 0.56	**	**	**
Total Kjeldahl nitrogen ^l	lb	mean std. deviation	0.45 0.096	0.34 0.073	0.27 0.045	0.52 0.21	0.42 0.11	0.45 0.12	0.30 0.063	0.84 0.22	1.1 0.24	0.62 0.13	1.5 0.54
Ammonia nitrogen	lb	mean std. deviation	0.079 0.083	0.086 0.052	0.12 0.016	0.29 0.10	**	**	**	0.21 0.18	**	0.080 0.018	**
Total phosphorus	lb	mean std. deviation	0.094 0.024	0.092 0.027	0.066 0.011	0.18 0.10	0.087 0.030	0.11 0.016	0.071 0.026	0.30 0.081	0.30 0.053	0.23 0.093	0.54 0.21

DDA Lab Analysis of Poultry Manure 2005 through 2009

		No.	Total N Phosphate (P2O		ate (P2O5)	Total P		
Y	'ear	Samples	%	lbs/ton	%P2O5	lbs P2O5/ton	% P	lbs P/ton
2	005	462	2.93	58.6	2.23	44.7	0.98	19.5
2	006	589	2.77	55.4	2.05	41.1	0.90	17.9
2	007	522	2.86	57.2	2.36	46.4	1.03	20.2
2	800	472	2.83	56.6	2.35	48.5	1.02	21.1
2	009	721	2.77	55.5	2.24	44.7	0.98	19.5
		2766	2.83	56.7	2.25	45.1	0.98	19.7
		(total No						

(total No.

of samples)

averages

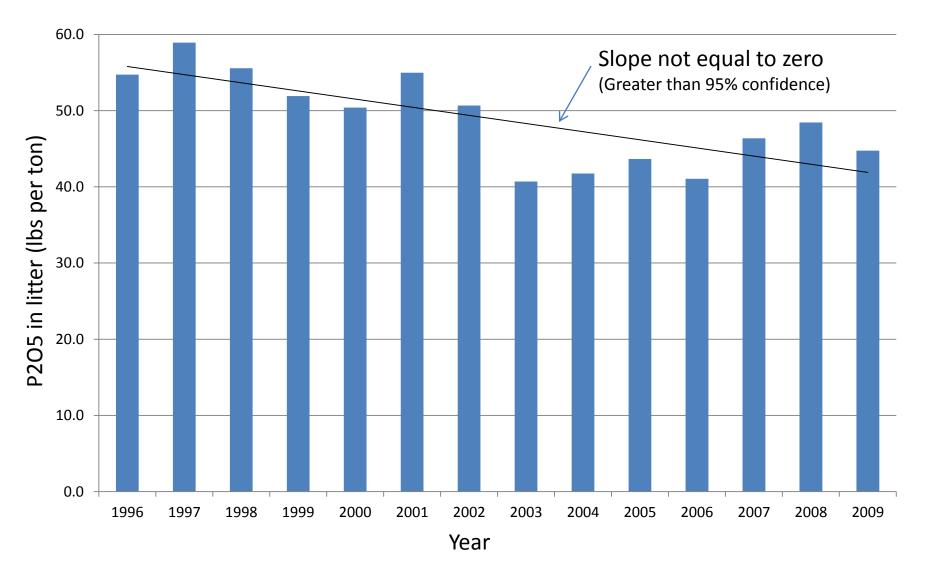
Manure Generation Estimates

•	University of Delaware 1.25 tons per 1000 birds
•	University of Maryland 1.0 tons per 1000 birds
•	Penn State 20 lbs per 1000 lbs of birds
	1.07 tons per 1000 small birds
	1.65 tons per 1000 large birds
•	Arkansas 1.025 tons per 1000 birds
•	NRAES 1.25 tons per 1000 birds
•	Alabama 0.6 lbs per lb of meat produced
	(~ 1.7 tons per 1000 birds)

Case Study: Sussex County, Delaware

EPA/	ASAE

	Approach	units
Bird Inventory	43,620,576	# of birds on any given day (2007 Census)
Animal Unit Definition	455	# of birds per 1000 lbs of animal mass
Total Animal Unit Inventory	95,869	animal units on any given day
Manure Production	85	lbs of manure per animal unit per day
Total Manure Produced	1,487,174	tons wet excretion per year
Nitrogen Concentration	0.0129	lbs TKN per lb of manure
Phosphorous Concentration	0.0035	lbs Total P per lb of manure
Total Nitrogen Produced	38,491,563	lbs Total N per year
Total Nitrogen Not Volatized	35,332,221	lbs Total N per year
Total Phosphorous Produced	10,497,699	lbs Total P per year
Total Phosphorous Produced	8,818,067	lbs Total P per year
with 16% phytase credit	-	-


with 16% phytase credit

HD/DDA/HMD

	UD/DDA/UND	
	Approach	units
No of Birds	43,620,576	# of birds
No of Flocks per Year	4.8	flock per year
Total Number of Birds Produced	209,378,765	birds per year
Manure Production	1.25	tons per 1000 birds
Total Manure Produced	261,723	tons per year
Nitrogen Concentration	56.80	lbs Total N per ton
Phosphorous Concentration	19.50	lbs Total P per ton
Total Nitrogen Produced	14,839,720	lbs Total N per year
Total Phosphorous Produced	5,103,607	lbs Total P per year

Phosphorous Concentration Trend

Delaware

Implications and Current Status

- Genetics, feed technologies and improved growing environments have reduced waste produced from the poultry industry.
- Daily loading of nutrients may be much lower from agriculture and food production systems. (significant TMDL implications).
- Chesapeake Bay Program modelers are working with us to better understand/develop modern nutrient generation prediction models.

Implications and Current Status ...

 Chesapeake Bay Program modelers are working with us to better understand/develop modern nutrient generation prediction models.

- Five of six states analyzing local data
 - N and P concentrations
 - Delaware analyzing manure generation amounts from 800 poultry houses on Delmarva.

Questions?

Comments?