Modeling Workgroup Meeting Quarterly Review

Optimization update: Integration with CAST.

Kalyanmoy Deb, Pouyan Nejadhashemi, Gregorio Toscano, Sebastian Hernandez-Suarez, and Julian Blank

6 JULY 2021 MICHIGAN STATE UNIVERSITY

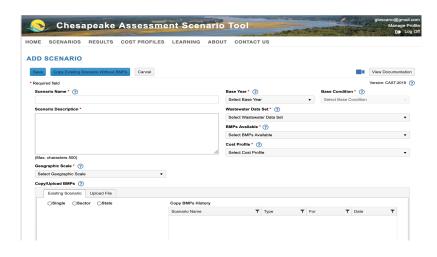


## Agenda

- Objective 1: Understanding the CAST system and Development of an Efficient Single-objective Hybrid Optimization Procedure
  - April 1, 2020 to September 30, 2021 (18 months)
- Current Accomplishments:
  - 1) A sample-based selection approach (Opt1)
  - 2) A simplistic model-based optimization algorithm using point-based method (Opt2)
  - 3)Interface our optimization method with CAST system (Opt3)
  - 4) Population-based genetic algorithm (Opt4).
- Next Steps:
  - 1) Hybrid population-point based optimization method will be developed (Opt5).
  - 2) Development of a user interface to interact with our developed algorithms (Opt6).

## Adopted models

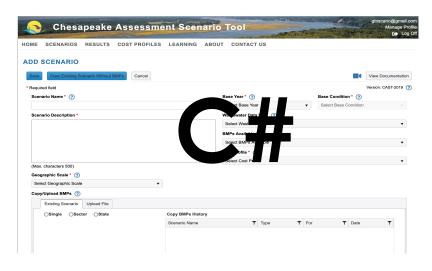
#### **Analytical Model**


# Minimize $f(\mathbf{x}) = \sum_{s \in S} \sum_{h \in H_s} \sum_{u \in U} \sum_{b \in B_u} \tau_b x_{s,h,u,b},$ Subject to $\sum_{s \in S} \sum_{h \in H_s} \sum_{u \in U} \left[ \alpha_{s,h,u} \phi_{s,h,u} \Pi_{G^B \in \mathcal{G}^B} \left( 1 - \sum_{b \in G^B} \eta_{s,h,b} \frac{x_{s,h,u,b}}{\alpha_{s,h,u}} \right) \right] \leq \Theta,$ $\sum_{b \in G^B} x_{s,h,u,b} \leq \alpha_{s,h,u}, \quad \forall s \in S, \ h \in H_s, \ u \in U_s, \ G^B \in \mathcal{G}^B,$ $x_{s,h,u,b} \geq 0, \quad \forall s \in S, \ h \in H_s, \ u \in U_s, \ b \in B_u.$ (1)

The variable  $x_{s,h,u,b}$  indicates the acres used for implementing a BMP b to reduce a load resource u.

#### **Highlights**

- Gradients
- Jacobians
- Hessian matrix
- Fast calculation
- Fast convergence
- Abstraction
- Accuracy


#### WebCast



#### **Highlights**

- Well-stablished
- Validated
- Web interface
- Manual execution
- Black box

#### CoreCast



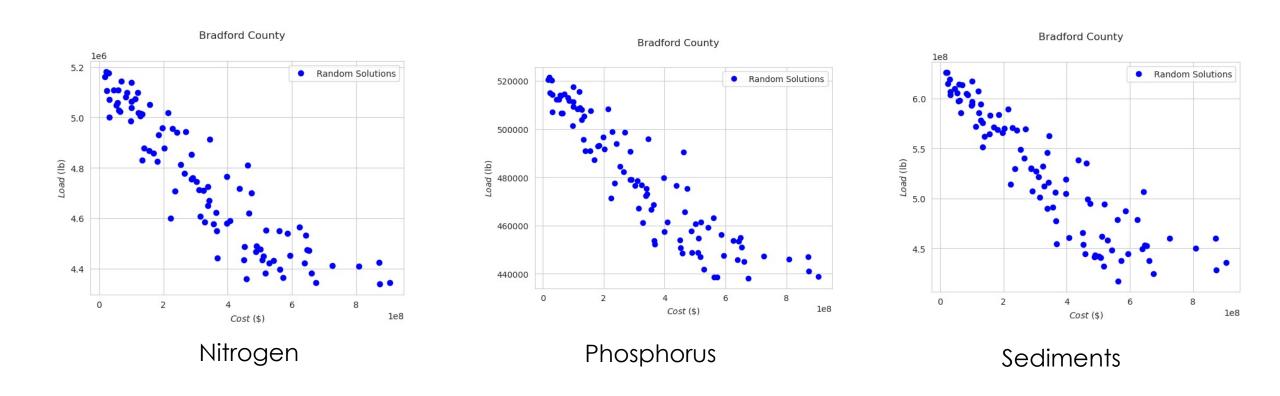
#### **Highlights**

- C# (fast implementation)
- Callable
- Slower than analytical model
- Black box

### Previous presentation

- Understanding of the CBWS problem
  - Spatial Hierarchy
  - Group of BMPs
  - Decision Variables
  - Justification
- Complexity reduction
  - Dimensionality reduction
  - Screening solutions based on non-dominance
- Obtained results were encouraging

## A sample-based selection approach (Opt1)


- BMP selection at random
- Evaluate in CoreCast
- 100 random solutions per county
- Presentation of results in four counties
  - Bradford, PA
  - Howard, MD
  - Lancaster, PA
  - Tioga, PA

### Base scenario\*

|           | # Variables | # Constraints | N (lb)     | P (lb)    | S (lb)        |
|-----------|-------------|---------------|------------|-----------|---------------|
| Bradford  | 28,356      | 2,029         | 5,190,951  | 522,346   | 629,678,546   |
| Howard    | 16,721      | 1,227         | 1,861,150  | 120,745   | 306,170,714   |
| Lancaster | 21,256      | 1,532         | 30,466,675 | 1,563,829 | 1,175,580,233 |
| Tioga     | 27,948      | 2,002         | 3,671,126  | 371,933   | 648,732,529   |

- Base Scenario\*: refers to the N,P,S loads when no BMP is implemented.
- Parameters used for Base Scenario: Base Condition: 2019 14, Backout Scenario: 2017
  CAST-2019, Scenario Type: Official BMPs, Cost Profile: Watershed, Soil P Data Sets: 2014,
  Historical Crop Need Scenario: 6608, Point Source Data Set: No Action. ATM Dep Data
  Sets: Allocation Air, Climate Change: Base30Y20180615\_FLOWSEDM, Base Load:
  Baseline Average Loads June 2018 Calibration, Data revision: 8.

## Bradford county (100 Random Solutions)



Trade-off between cost and loadings is clear. More Cost, less Loadings.

# A simplistic model-based optimization algorithms using point-based method (**Opt2**)

- Analytical model (efficiency BMPs)
- Interior point-based method
  - Exact derivatives
  - Exact Jacobian
  - Hessian Matrix
  - Smart initial point
  - Variable reduction
  - BMP screening based on Non-dominance

### Summary of results of the Analytical Model compared to CoreCast

| Bradford ( AM<br>- CoreCast %) |      |      | SLoadEos<br>% (diff) |
|--------------------------------|------|------|----------------------|
| Min                            | 0.02 | 0.05 | 0.39                 |
| Max                            | 2.39 | 4.35 | 32.52                |
| Average                        | 1.22 | 2.11 | 13.75                |
| Median                         | 1.27 | 2.12 | 12.15                |
| ST. Dev.                       | 0.73 | 1.34 | 9.46                 |

| Lancaster<br>( AM -<br>CoreCast %) | NLoadEos %<br>(diff) |      | SLoadEos %<br>(diff) |
|------------------------------------|----------------------|------|----------------------|
| Min                                | 0.01                 | 0.02 | 0.11                 |
| Max                                | 0.76                 | 3.58 | 23.35                |
| Average                            | 0.50                 | 1.49 | 9.47                 |
| Median                             | 0.57                 | 1.31 | 8.55                 |
| ST. Dev.                           | 0.18                 | 0.94 | 6.11                 |

| <u> </u> |      |       | SLoadEos<br>% (diff) |
|----------|------|-------|----------------------|
| Min      | 0.00 | 0.02  | 0.10                 |
| Max      | 2.44 | 17.79 | 50.76                |
| Average  | 1.03 | 6.60  | 19.73                |
| Median   | 1.10 | 6.76  | 18.27                |
| ST. Dev. | 0.68 | 4.60  | 14.44                |

| Tioga ( AM -<br>CoreCast %) | NLoadEos %<br>(diff) |      | SLoadEos %<br>(diff) |
|-----------------------------|----------------------|------|----------------------|
| Min                         | 0.00                 | 0.00 | 0.00                 |
| Max                         | 2.87                 | 5.61 | 23.31                |
| Average                     | 1.32                 | 2.52 | 9.55                 |
| Median                      | 1.24                 | 2.45 | 8.95                 |
| ST. Dev.                    | 0.84                 | 1.63 | 6.30                 |

#### Summary of results of the Analytical Model compared to CoreCast

| Bradford (   AM | NLoadEos % | PLoadEos | SLoadEos |
|-----------------|------------|----------|----------|
| - CoreCast   %) | (diff)     | % (diff) | % (diff) |

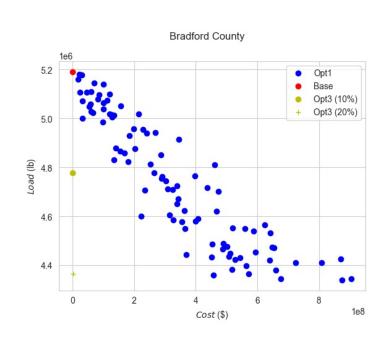
- Howard ( | AM NLoadEos PLoadEos SLoadEos CoreCast | %) % (diff) % (diff) % (diff)
- In average, the analytical model differs in less than **2**% regarding Nitrogen, **4**% regarding Phosphorus, and **14**% in for Sediments in average.
- The cost did not differ.

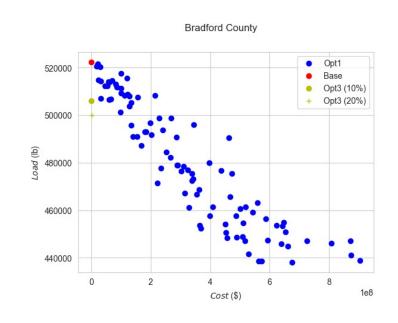
| CoreCast   %) | (diff) | (diff) | (diff) |
|---------------|--------|--------|--------|
| Min           | 0.01   | 0.02   | 0.11   |
| Max           | 0.76   | 3.58   | 23.35  |
| Average       | 0.50   | 1.49   | 9.47   |
| Median        | 0.57   | 1.31   | 8.55   |
| ST. Dev.      | 0.18   | 0.94   | 6.11   |

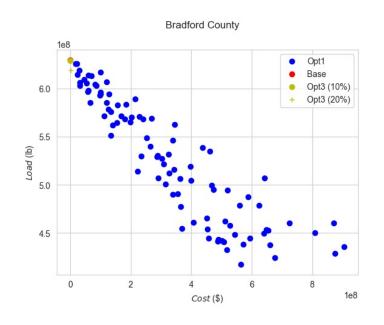
| CoreCast 70) | (alir) | (alir) | (alir) |
|--------------|--------|--------|--------|
| Min          | 0.00   | 0.00   | 0.00   |
| Max          | 2.87   | 5.61   | 23.31  |
| Average      | 1.32   | 2.52   | 9.55   |
| Median       | 1.24   | 2.45   | 8.95   |
| ST. Dev.     | 0.84   | 1.63   | 6.30   |

# Interface our optimization method with CoreCAST system (Opt3)

- We interfaced our Opt2 approach with CoreCAST.
- Based conditions are managed by CoreCast.
- We evaluate the final solution provided by Opt2 in CoreCast.
- We can fine-tune the threshold for the Nitrogen, Phosphorous, or Sediment.
- Results are encouraging.


## Encouraging results


- We are working with a single pollutant at a time.
- Our goal was to minimize the cost while reduce the nitrogen base load by 10%.
- We re-executed the algorithm, but reducing 20% of the base load nitrogen


| Opt3 (10% reduction) | Cost (\$) | N (lb)     | P (lb)    | S (lb)        |
|----------------------|-----------|------------|-----------|---------------|
| Bradford             | 570,169   | 4,778,962  | 506,153   | 629,279,278   |
| Howard               | 196,423   | 1,717,602  | 115,387   | 306,158,106   |
| Lancaster            | 1,676,396 | 27,624,574 | 1,525,938 | 1,171,957,024 |
| Tioga                | 348,650   | 3,408,676  | 360,610   | 648,162,337   |

| Opt3 (20%<br>reduction) | Cost (I\$) | N (lb)     | P (lb)    | \$ (lb)       |
|-------------------------|------------|------------|-----------|---------------|
| Bradford                | 2,550,280  | 4,365,486  | 500,083   | 618,959,830   |
| Howard                  | 832,168    | 1,575,854  | 115,289   | 305,567,531   |
| Lancaster               | 5,415,424  | 24,816,408 | 1,434,194 | 1,162,320,506 |
| Tioga                   | 1,682,485  | 3,147,071  | 355,955   | 640,571,659   |

## Example of results of OP3 compared to Opt1







Nitrogen

Phosphorus

Sediments

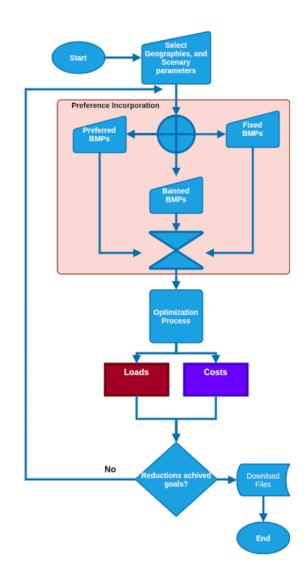
Optimized results require lower Cost.

# Population-based genetic algorithm developed to solve the Analytical Model (Opt4).

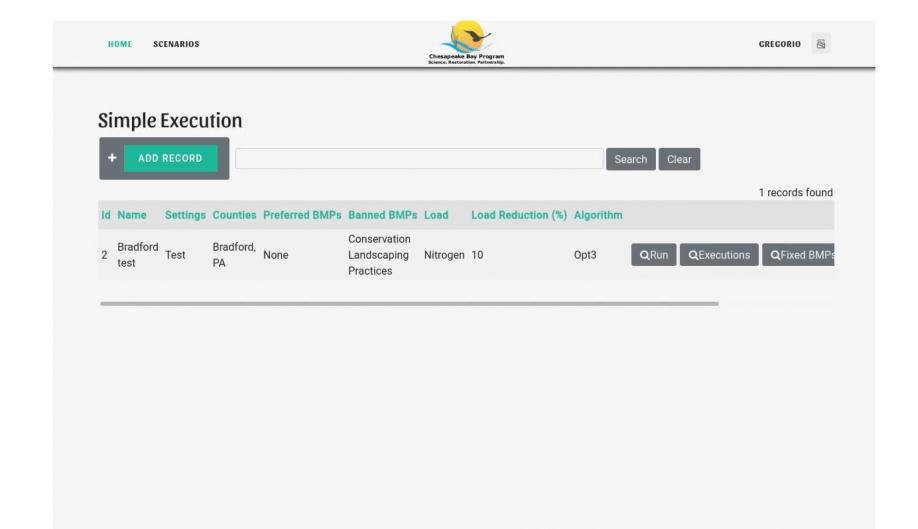
- Optimization methods:
  - Point-based: Fast but local approach, sensitive to initial point
  - Population-based: Global approach to near-optimality
  - No one method is provably best for all problems (NFL theorem)
- Evolutionary optimization is flexible to be aided for handling practicalities

# Population-based genetic algorithm will be applied to solve the Opt2 (Opt4).

- Base Genetic Algorithm (without any customization) implemented from scratch in C++
- Binary representation (naïve representation: 1 for a BMP means it is used in the whole parcel), 38,170 Boolean variables
- One-point crossover operator
- Flip-bit mutation operator
- Binary Tournament selection
- 0.8 crossover probability
- 1/L mutation probability (L: #variables)
- 30 executions


# Hybrid population-point based optimization method will be developed (**Opt5**)

- Develop a Customized GA for a single-objective opt.:
  - Developing customized genetic operators and customized initialization should improve our BGA results
  - Hybridizing GA with an interior-point-based approach
- On going process.

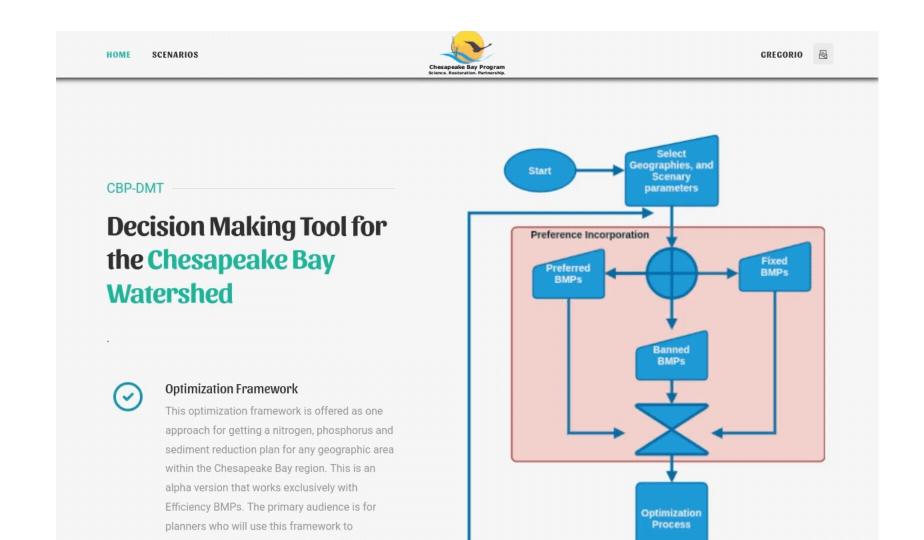

# Development of a user interface to interact with our developed algorithm (**Opt6**)

- The approach should be useful for users.
- Developing of a user interface.
- Easy to use.
- Preference incorporation (preferred BMPs, banned BMPs, fixed BMPs).
- Sharing and re-execution.
- On going process.
- The results will be reported in our Objective 1 report.

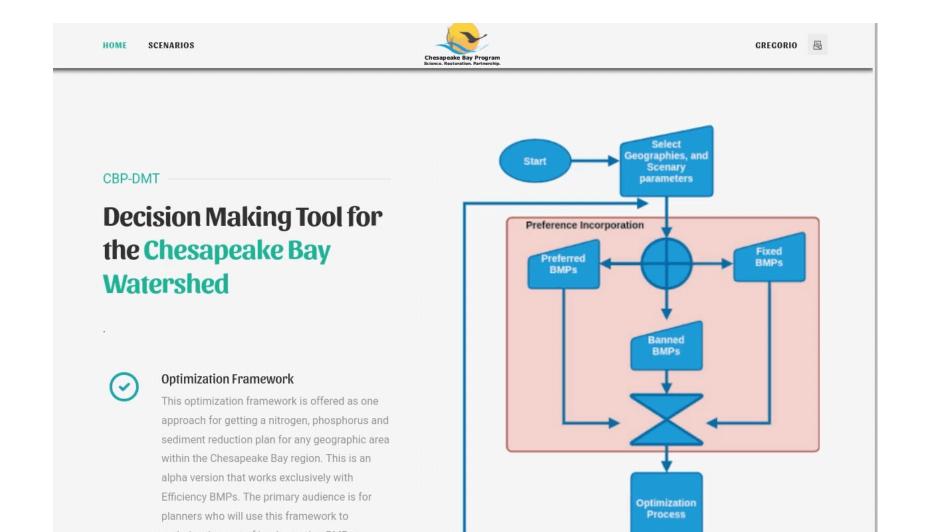
# Decision Making Tool for the Chesapeake Watershed



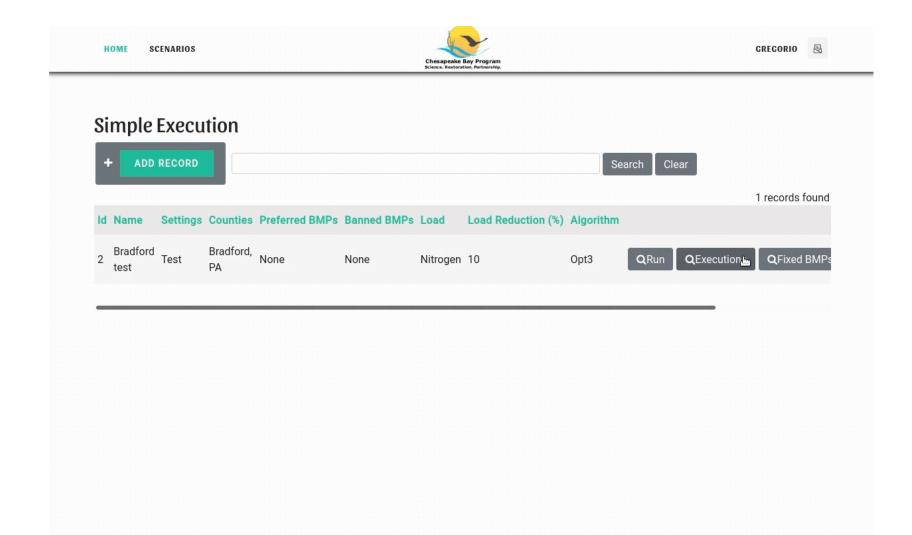
## Banned BMPs



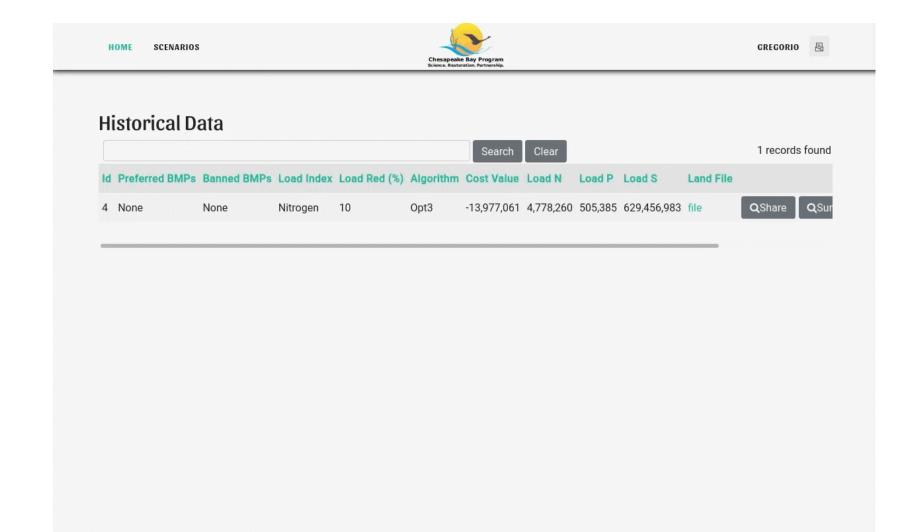

## Summary


- A sample-based selection approach showed the needs for an optimization approach
- The analytical model is quite accurate regarding nitrogen and phosphorus.
- Interior-point-based method can optimize the analytical model.
- We an interface to automatically execute CoreCast
- Well-design hybrid methods can converge faster, using fewer function calls.
- Users will be able to call our optimization approach through a web interface.

## Thank you


# Decision Making Tool for the Chesapeake Watershed




### New Scenario



## Details



## Banned BMPs



SCENARIOS

#### **Base Settings**



ID

NAME

Test

BASE CONDITION

2019 14

BACKOUT SCENARIO

2017 CAST-2019

SCENARIO TYPE

Official BMPs

COST PROFILE

Watershed

SOIL P DATA SETS

2014

HISTORICAL CROP NEED SCENARIO

6608

POINT SOURCE DATA SET

No Action

ATM DEP DATA SETS

Allocation Air

**CLIMATE CHANGE** 

BASE30Y20180615\_FLOWSEDM

BASE LOAD

Baseline Average Loads

DATA REVISION

8

SCENARIOS



GREGORIO 🗟



#### **Historical Data**

|    |                |                      |            |             |              | Search (  | Clear       |           |         |             | 4 records fo | ound |
|----|----------------|----------------------|------------|-------------|--------------|-----------|-------------|-----------|---------|-------------|--------------|------|
| ld | Preferred BMPs | Banned BMPs          | Fixed BMPs | Load Index  | Load Red (%) | Algorithm | Cost Value  | Load N    | Load P  | Load S      | Land File    |      |
| 76 | None           | None                 | None       | Nitrogen    | 10           | Opt3      | -13,977,061 | 4,778,260 | 505,385 | 629,456,983 | file         | C    |
| 79 | None           | Conservation<br>Land | None       | Nitrogen    | 10           | Opt3      | 570,169     | 4,778,962 | 506,153 | 629,279,278 | file         | C    |
| 80 | None           | Conservation<br>Land | None       | Nitrogen    | 20           | Opt3      | 2,550,280   | 4,365,486 | 500,083 | 618,959,830 | file         | C    |
| 81 | None           | Conservation<br>Land | None       | Phosphorous | 10           | Opt3      | 424,013     | 5,133,044 | 479,546 | 514,554,815 | file         | C    |

SCENARIOS



GREGORIO 🗟



#### **Bmp Summary**

| # | ВМР                                                 | Acres           | Cost            |
|---|-----------------------------------------------------|-----------------|-----------------|
| 1 | Agricultural Stormwater Management                  | 10.9152209      | 18011.20573     |
| 1 | Erosion and Sediment Control Level 1                | 1.405197788e-07 | 0.0002123562961 |
| 1 | Nutrient Management Maryland Do It Yourself         | 3.805178353e-05 | 7.572304958e-05 |
| 1 | Nutrient Management Maryland Commercial Applicators | 3.805178353e-05 | 7.572304958e-05 |
| 1 | Erosion and Sediment Control Level 2                | 3.756362004e-09 | 2.382427481e-05 |
| 1 | Nutrient Management Plan                            | 6.736501053e-05 | 0.0001340563716 |
| 1 | Barnyard Runoff Control                             | 144.5263044     | 83810.80746     |
| 1 | Erosion and Sediment Control Level 3                | 2.963852585e-09 | 2.349733501e-05 |
| 1 | Nutrient Management Plan High Risk Lawn             | 957.5870493     | 1905.598237     |
| 1 | Nutrient Management N Rate                          | 13188.19347     | 121858.9046     |
| 1 | Nutrient Management Plan Low Risk Lawn              | 5.56179115e-05  | 0.0001106796444 |
| 1 | Conservation Landscaping Practices                  | 46803.91475     | -14202648.5     |

### Base conditions are managed by CoreCast

- Base condition (i.e., 2019)
- Backout scenario (i.e., 2017 CAST-2019)
- Scenario type (i.e., Official BMPs)
- Cost profile (i.e., Watershed)
- Soil P (i.e., 2014)
- Historical crop need scenario (i.e., 6608)
- Point source (i.e., No Action)
- ATM Dep (i.e., Allocation Air)
- Climate change (i.e., BASE30Y20180615\_FLOWSEDM)
- Base load (i.e., Baseline avg loads, June 2018 calibration)
- Data revision (i.e., 8)