The 2012 User's Guide to Chesapeake Bay Program Biological Monitoring Data

Chesapeake Bay Program June 2012

The 2012 User's Guide To Chesapeake Bay Program Biological Monitoring Data

June 2012

Prepared for

Chesapeake Bay Program 410 Severn Avenue Annapolis, Maryland 21403

By

Interstate Commission on the Potomac River Basin 51 Monroe Street, Suite PE-08 Rockville, Maryland 20850

United States Environmental Protection Agency Chesapeake Bay Program Document CBP/TRS 305/12 EPA 003R 903R 12-002

Interstate Commission on the Potomac River Basin Document ICBPR Report 12-05

To receive additional copies of this report, please write: Chesapeake Bay Program 410 Severn Avenue Annapolis, Maryland 21403 Or call 1-800-YOUR-BAY (1-800-968-7229). This document is available online at http://www.chesapeakebay.net

Development of *The 2012 User's Guide to Chesapeake Bay Program Biological Monitoring Data* was supported by a grant from the U.S. Environmental Protection Agency (CB963057-01) and the Interstate Commission on the Potomac River Basin, an interstate compact river basin commission whose signatories are the U.S. Environmental Protection Agency, Maryland, Virginia, Pennsylvania, West Virginia and the District of Columbia.

SUMMARY

This document describes how to access biological monitoring data from the Chesapeake Bay Program's Chesapeake Data Enterprise (CDE) formerly the Chesapeake Information Management System (CIMS). It provides information on:

- Currently available Chesapeake Bay Program (CBP) biological monitoring and geographic information system (GIS) databases;
- Procedures for obtaining biological monitoring data online from the CBP- Bay Resource Library, online from other program partner web sitess, or directly from the Living Resources Data Manager and/or Living Resources GIS specialists;
- CIMS/CDE standards for publishing data to the public, including field names, attributes, and data dictionary tables;
- Guidance for organizations submitting biological data directly to the CBPO data center;
- Guidance for data usage and ecosystem indicator metrics.

Tidal Phytoplankton, Zooplankton and Benthos

All Chesapeake Bay phytoplankton, historic zooplankton (including microzooplankton, mesozooplankton and gelatinous zooplankton) and benthos monitoring data and data documentation for Maryland and Virginia from 1984 to present can be obtained directly from the Internet web site (<u>http://www.chesapeakebay.net</u>) or from the Living Resources Data Manager. In addition to monitoring data there are a variety of calculated biological metrics and indexes of biotic integrity data are also available. All data are published in standardized formats and are compatible with the CBP water quality and other databases. They are available online a) comma or tab delimited ASCII flat files or XML Schema formatted files. Other formats are available upon request.

Submerged Aquatic Vegetation (SAV)

Data and documentation for the annual Chesapeake Bay Submerged Aquatic Vegetation Aerial Survey are generated and managed by the Virginia Institute of Marine Sciences (VIMS). Data is maintained as GIS data layers. Survey data layers and related reports are available from the VIMS SAV web site (<u>http://www.vims.edu/bio/sav/index.html</u>). These data are also accessible through a variety of Internet based mapping tools, including Chesapeake Stat (<u>http://stat.chesapeakebay.net/</u>) on the CBP web site.

Non-Tidal Benthic Macroinvertebrates

The Chesapeake Bay Program Office (CBPO) has acquired historical and current benthic macroinvertebrate, habitat, and water quality data for non-tidal streams and wadeable rivers from over 20 federal, state, regional, local, and academic monitoring programs throughout the Chesapeake Bay basin. Data from 1992-2010 have been obtained from the data providers, reprocessed, and quality checked and assured. The data are used to compute the annual Chessie B-IBI that serves as an indicator of local stream health for the watershed. Most data originators are allowing their raw monitoring data, as well as the biological metrics and Chessie B-IBI calculated by the Living Resources Data Manager to be distributed by the Bay Program Data Center. All data are published in standardized formats and are compatible with the CBP water quality and other databases. They are available online a) comma or tab delimited ASCII flat files or XML Schema formatted files from the internet web site (http://www.chesapeakebay.net) or from the Living Resources Data Manager. Other formats are

available upon request.

Geographic Information System Resources

The Chesapeake Bay Program Data Center has made available many of its GIS data layers. The available data layers cover a wide range of topic areas including habitats, fish passage, Bay bathymetry and political boundaries. Data are available online as GIS data layers (http://ftp.chesapeakebay.net/pub/Geographic/), static maps (http://ftp.chesapeakebay.net/pub/Geographic/), static maps (<a href="http://tttp:

TABLE OF CONTENTS

TABLE OF CONTENTS	5
INTRODUCTION	7
BACKGROUND	7
CHESAPEAKE INFORMATION MANAGEMENT SYSTEM EXECUTIVE ORDER 13508 CHESAPEAKE BAY PROGRAM DATA CENTER THE LIVING RESOURCES DATA MANAGEMENT PROGRAM	7 7 8 8
MONITORING DATA CURRENTLY AVAILABLE THROUGH CIMS/CDE	9
CHESAPEAKE BAY TIDAL MONITORING AND HISTORICAL BAY MONITORING DATA CHESAPEAKE BAY WATERSHED MONITORING DATA GEOGRAPHIC INFORMATION SYSTEM MAPS, DATA AND SERVICES	9
OBTAINING MONITORING DATA	17
INFORMATION ACCESS THROUGH CHESAPEAKE DATA ENTERPRISE CIMS/CDE WORLD WIDE WEB ACCESS	17 17
USING MONITORING DATA	20
MERGING CIMS/CDE DATA FILES	
BIOLOGICAL DATA QUALITY ASSURANCE ISSUES	
ECOSYSTEM INDICATORS	21
BIOLOGICAL DATA QUALITY ASSURANCE ISSUES ECOSYSTEM INDICATORS THE BENTHIC INDEX OF BIOTIC INTEGRITY THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS	49 49 51 53
ECOSYSTEM INDICATORS THE BENTHIC INDEX OF BIOTIC INTEGRITY THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS REFERENCES.	21 49 51 53 56
ECOSYSTEM INDICATORS THE BENTHIC INDEX OF BIOTIC INTEGRITY THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS REFERENCES APPENDIX A – DATA SET STRUCTURES FOR AVAILABLE CIMS/CDE DATA	21 49 51 53 56 59
BIOLOGICAL DATA QUALITY ASSURANCE ISSUES. ECOSYSTEM INDICATORS. THE BENTHIC INDEX OF BIOTIC INTEGRITY THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS. BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS. REFERENCES. APPENDIX A – DATA SET STRUCTURES FOR AVAILABLE CIMS/CDE DATA APPENDIX B – BIOLOGICAL DATA DICTIONARY.	21 49 51 53 56 59 76
BIOLOGICAL DATA QUALITY ASSURANCE ISSUES. ECOSYSTEM INDICATORS. THE BENTHIC INDEX OF BIOTIC INTEGRITY. THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS. BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS. REFERENCES. APPENDIX A – DATA SET STRUCTURES FOR AVAILABLE CIMS/CDE DATA. APPENDIX B – BIOLOGICAL DATA DICTIONARY. APPENDIX C – LOOK UP AND PARAMETER CODES.	21 49 51 53 56 59 76 87
ECOSYSTEM INDICATORS THE BENTHIC INDEX OF BIOTIC INTEGRITY THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS REFERENCES APPENDIX A – DATA SET STRUCTURES FOR AVAILABLE CIMS/CDE DATA APPENDIX B – BIOLOGICAL DATA DICTIONARY APPENDIX C – LOOK UP AND PARAMETER CODES APPENDIX D – CHESAPEAKE BAY PROGRAM DATA CENTER CONTACTS	21 49 51 53 56 59 76 76 76 76

THE 2012 USER'S GUIDE TO CHESAPEAKE BAY PROGRAM BIOLOGICAL MONITORING DATA

INTRODUCTION

The *2012 User's Guide* is intended to help data user's access and use biological monitoring data collected in as part of the Chesapeake Bay Program monitoring network. This guide describes many of the biological databases currently available through the Chesapeake Data Enterprise (CDE) formerly the Chesapeake Information Management System (CIMS) in standardized structures and formats (CIMS/CDE databases). It describes where the data and data products reside and how to obtain them.

Background

CHESAPEAKE INFORMATION MANAGEMENT SYSTEM

In 1996 the Chesapeake Executive Council adopted the *Strategy for Increasing Basin-wide Public Access to Chesapeake Bay Information.* This strategy called for partners in the Chesapeake Bay Program to develop and implement the Chesapeake Information Management System (CIMS). The intent of CIMS was to electronically link a variety of information about the Bay and its tributaries and make this information available electronically through the Internet to a variety of audiences. The information targeted for distribution through CIMS included technical and public information, educational material, environmental indicators, policy documents and scientific data.

As a result of the CIMS initiative the various federal, state, academic and non-governmental organizations worked to establish a system of distributed databases. Many of the data assets available through CIMS were hosted on the data originator's Internet sites. The intent of the CIMS system was to provide a single location from which all data assets would be available.

EXECUTIVE ORDER 13508

On May 12, 2009, President Barack Obama signed an Executive Order that recognizes the Chesapeake Bay as a national treasure and calls on the federal government to lead a renewed effort to restore and protect the nation's largest estuary and its watershed.

The Executive Order directs CBP partners to "identify the mechanisms that will assure that governmental and other activities, including data collection and distribution, are coordinated and effective, relying on existing mechanisms where appropriate".

In 2010, in response to the Executive Order, the partnership began development of the Chesapeake Data Enterprise (CDE) based on the CIMS foundation. The data enterprise shares many of the same principles of CIMS, but broadens the partnership to include new data exchange partners and new data themes. Additionally, the data enterprise effort seeks to upgrade data exchange methods, adopt new standards, and refresh partnership agreements based on newer technologies and approaches.

CHESAPEAKE BAY PROGRAM DATA CENTER

The EPA CBP presently maintains a Data Center at its main office in Annapolis, Maryland. The Data Center provides data management, Geographic Information Systems (GIS), web development, modeling and technical support to program participants for the purpose of accomplishing the goals and objectives of the partnership. The Data Center manages computer hardware and software, provides user support and training for these computer resources, acquires and stores data sets and provides analytical support for CBP activities.

The CBP Data Center is one of many geographically distributed data centers in the Chesapeake Bay watershed. Recipients of Data Center services are the CBP goal implementation teams, CBP resource managers and the watershed's scientific community and stakeholders.

THE LIVING RESOURCES DATA MANAGEMENT PROGRAM

The Living Resources Data Management Program (LRDMP) has traditionally focused on the management of technical data and production of analyzed data products. Data at these levels consists of:

- Raw data: Typically the original field and laboratory results of monitoring programs. Data are collected and managed offsite by the data originators and not available from the CBP Data Center.
- Primary data: Delivered to the CBP Data Center by the data originators. Many data sets are currently available from the Data Center "as is" with their existing documentation. A long-term goal of the CBP Data Center is to work with the data originators to produce primary data sets that meet or come close to CIMS/CDE standards and specifications, and to de-emphasize use of primary data in favor of "CIMS/CDE data."
- CBP Data: CBP monitoring databases or CIMS/CDE compliant databases which are available through the CIMS/CDE partners. All compliant databases follow common data dictionaries and data reporting standards. Biological point data become CIMS/CDE data after they are placed in uniform, relational databases. Prior to loading data into the databases, data are rigorously checked for duplicate fields, outliers, erroneous data and other errors in the data are resolved with the data providers. Biological point data in CIMS/CDE database structures are currently stored in relational databases on CBP Data Center servers and available to the public through a variety of interfaces on the Bay Program web site.
- Ecosystem Indicator data: Datasets of technical indicators derived from monitoring data are now available. The information is computed from water quality and biological data in available databases using accepted algorithms and/or GIS methods. These forms of the data have been demonstrated to be extremely useful to CBP participants, resource managers and the general public.

The LRDMP has been a major participant in the establishment of CIMS the network and continues to be a contributor to the CDE effort. The LRDMP has helped establish CIMS/CDE standards for data dictionaries, data documentation and uniform relational database designs. This document is part of the CBP data management guidance. The LRDMP has helped to improve the ability of data generators to produce quality data and establish a number of data generators as distributed CIMS/CDE data sites. In recent years the LRDMP has placed an increased emphasis on data analysis, development of data analysis tools and indicators.

MONITORING DATA CURRENTLY AVAILABLE THROUGH CIMS/CDE

CHESAPEAKE BAY TIDAL MONITORING AND HISTORICAL BAY MONITORING DATA

Point data collected as part of the CBP monitoring network are described briefly below. Point data are defined as data collected at a single point that can be referred to by a single latitude and longitude. Data collected as part of the monitoring network may be directly funded by CBP or matching grant funded by a program partner and reported as grant deliverables or funded by program partners and voluntarily reported. CBP funded and match grant funded monitoring data sets are subject to higher levels of quality assurance and data reporting requirements for data submission. Ideally all data (voluntary submissions and grant deliverables) submitted by the data generators are in a standardized table structure suitable for loading into the relational databases. The Living Resources Data Manager rigorously QA/QC's the data, loads them into the CIMS/CDE relational database structure, and updates the data documentation provided. The data are published through an online searchable database as a) comma or tab delimited ASCII flat files or XML Schema formatted files. Data in alterative formats or data on media (compact disc) are available upon request.

All monitoring data collected as part of the formal Maryland and Virginia Chesapeake Bay tidal monitoring programs including the current (1984-present) phytoplankton, fluorescence, tidal benthic and historic (1984-2002) zooplankton monitoring and Primary Production (1984-2009) data are available from the CBP Internet web page. Sampling was usually coordinated with the CBP water quality survey unless otherwise noted. Data from active monitoring programs are routinely updated in six-month increments. Data collected between January and June of the current calendar year are added to the databases in December of the same year. Data collected between July and December are added to the database by May of the following year. Monitoring data from voluntarily reporting programs are requested in biennial data calls. Selected historical data sets are also being included in the online databases. Historic data are being provided to the CBP Data Center on an ongoing basis; please contact the Living Resources Data Manager (see Appendix D) for details and data set availability.

The URL of the CBP Internet web site is <u>http://www.chesapeakebay.net/</u>. Field names and attributes for data from the online databases are provided in Appendix A. A complete list of CIMS/CDE-compliant field names for biological data sets, their definitions and data types are provided in Appendix B. An explanation of field values and definitions of the parameter codes used in the CIMS/CDE databases are contained in Appendix C. A list of CBPO Data Center contacts are provided in Appendix D. A complete list of general CIMS/CDE data reporting standards and biological specific data reporting formats for CBP monitoring data submitters are included in Appendix E.

Chesapeake Bay Program Supported Monitoring Data

Phytoplankton

Maryland Phytoplankton Taxonomic Survey. Data have been collected at fixed sampling stations in the upper Chesapeake Bay and tidal tributaries in Maryland since July of 1984. The formal baywide plankton monitoring program in Maryland was defunded in 2009. However, piecemeal funding has maintained a reduced spring and summer sampling program through the present. The surveys examine phytoplankton community species composition and abundance. Data are collected by staff from Morgan State University (MSU) for the Maryland Department of the Environment (MDE)/Maryland Department of Natural Resources (MDDNR).

Virginia Phytoplankton Taxonomic Survey. Data have been collected at fixed sampling stations in the Lower Chesapeake Bay mainstem since January 1985, in Virginia tidal tributaries since July 1986 and in

the Elizabeth River since January1989. In 2010, sample collection in the tributaries was reduced to above pycnocline only sampling but continues through the present. The surveys examine phytoplankton community species composition and abundance. Presently data are collected by staff from Old Dominion University (ODU) for the Virginia Department of Environmental Quality (VADEQ).

Picoplankton

Maryland Picoplankton Abundance Survey. Beginning in May 2002, additional samples were collected for the enumeration of picoplankton during the months of June-September at the following stations: CB3.3C, CB4.3C, CB5.2, ET5.2, LE1.1, LE2.2, and WT5.1 (Figure 1). The baywide plankton monitoring program in Maryland was defunded in 2009. However, piecemeal funding has maintained a reduced spring and summer sampling program through the present. Data are collected by staff from MSU for MDE/MDDNR.

Virginia Picoplankton Abundance Survey. Data have been collected at fixed sampling stations in the Lower Chesapeake Bay mainstem, Virginia tidal tributaries and the Elizabeth River since January 1989. In 2010, sample collection in the tributaries was reduced to above pycnocline only sampling but continues through the present. The surveys provide epifluorescence counts of picoplankton abundance. Data are collected by staff from ODU for VADEQ.

Primary Productivity

Maryland Carbon-14 Primary Production Survey. Data were collected at fixed sampling stations in the upper Chesapeake Bay and tidal tributaries in Maryland starting in July 1984. All primary production monitoring was terminated in September 2009. The surveys consisted of measurements of photosynthetic (primary) production. Data were collected by staff MSU for MDE/MDDNR.

Virginia Carbon-14 Primary Production Survey. Data were collected at fixed sampling stations in the Chesapeake Bay mainstem since January 1989, in Virginia tidal tributaries since July 1996 and in the Elizabeth River since January 1989. All primary production monitoring was terminated in September 2009. The surveys consisted of measurements of photosynthetic (primary) production. Data prior to 1995 lacks concurrent measurements of chlorophyll for determination of assimilation ratio (production efficiency). Data were collected by staff from ODU for VADEQ.

Microzooplankton

Maryland Microzooplankton Taxonomic Survey. Data were collected at fixed sampling stations in the upper Chesapeake Bay and tidal tributaries in Maryland from July 1984 through September 2002. Between 1998 and 2000, additional whole water samples were collected March through September and enumerated for cilliates at the following mesohaline stations: CB3.3C, CB4.3C, CB5.2, ET5.2, LE1.1, LE2.2, TF1.5, TF2.3 and WT5.1 (Figure 1). The formal CBP baywide zooplankton monitoring program was terminated in September 2002. All historic data are available on the CBP web page. Survey data consist of counts of microzooplankton between 202 and 44 microns in size enumerated for species composition and abundance. Data were collected by staff of MSU for MDE/MDDNR.

Virginia Microzooplankton Taxonomic Survey. Data were collected at fixed sampling stations in the lower Chesapeake Bay and the Virginia tidal tributaries, including the Elizabeth River from July 1993 through October 2002. The formal baywide CBP zooplankton monitoring program was terminated in September 2002. Survey data consist of measurements of species composition and abundance. All microzooplankton less than 202 microns in size collected in whole water samples were enumerated to major taxonomic group. Data were collected by the staff from ODU for VADEQ.

Mesozooplankton and Gelatinous Zooplankton

Maryland Zooplankton Taxonomic Survey. Data were collected at fixed sampling stations in the upper Chesapeake Bay and tidal tributaries in Maryland from July 1984 through October 2002. The Baywide

CBP zooplankton monitoring program was terminated in September 2002. Measurements made as part of this survey include identifications of mesozooplankton species (>202 microns) to the lowest practical taxonomic level, measurements of mesozooplankton biomass, and measurements of gelatinous zooplankton biovolumes. Data were collected by staff from Versar Incorporated, for MDE/MDDNR.

Virginia Zooplankton Taxonomic Survey. Data were collected at fixed sampling stations in the lower mainstem since July 1985, at tributary stations since July 1986 and in the Elizabeth River since January 1989. The Baywide CBP zooplankton monitoringprogram was terminated in September 2002. Measurements made as part of this survey include taxonomic identifications of mesozooplankton species (>202 microns) to the lowest practical taxonomic level. Biomass determinations were performed sporadically from 1985-1997. Measurements of gelatinous zooplankton counts and biovolumes were made sporadically between 1996 and 2002. Data were collected by staff from ODU for VADEQ.

Fluorescence

Maryland Vertical Fluorescence Survey. Surface-to-bottom *in situ* fluorescence measurements were made at fixed sampling stations in the upper Chesapeake Bay and tidal tributaries in Maryland from July 1984 through September 2009. The vertical fluorescence survey in Maryland was terminated in September 2009. Survey results consist of *in situ* chlorophyll *a* estimates. Data were collected by staff of MSU for MDE/MDDNR.

Virginia Vertical Fluorescence Survey. Surface-to-bottom *in situ* fluorescence measurements have been conducted at fixed sampling stations in the lower mainstem Chesapeake Bay since 1992. Survey results consist of *in situ* chlorophyll *a* estimates. Data for the mid-section of the bay prior to January 1995 were collected by the Virginia Institute of Marine Sciences (VIMS). Fluorescence surveys for the southern mainstem were performed by ODU from 1992-1995. After January 1996, ODU performed all Virginia fluorescence surveys. All surveys were collected on behalf of VADEQ.

Maryland Horizontal Fluorescence Survey. *In situ* fluorescence measurements were taken along surface transects between monitoring stations in the upper Chesapeake Bay and tidal tributaries in Maryland starting 1984. A special summertime (April-September) Potomac River Survey was conducted from 1990 to 2002. The horizontal fluorescence survey monitoring in Maryland was terminated in September 2009. Survey results consist of *in situ* chlorophyll *a* estimates. Data were collected by staff from MSU for MDE/MDDNR.

Virginia Horizontal Fluorescence Survey. *In situ* fluorescence measurements have been taken along surface transects between monitoring stations in the lower mainstem Chesapeake Bay since 1991. Survey results consist of *in situ* chlorophyll *a* estimates. Data for mid-section of the bay prior to January 1995 were collected by the VIMS. Fluorescence surveys for the southern mainstem performed by ODU from 1991- 1995. After January 1996, ODU performed all Virginia fluorescence surveys. All surveys were collected on behalf of VADEQ.

Figure 1. A Map of Chesapeake Bay Program Tidal Plankton Monitoring Stations

Tidal Benthos

Maryland Benthic Count, Biomass, and Sediment and Bottom Water Analyses Survey. Data have been collected at fixed and random sampling stations in the upper Chesapeake Bay and tidal tributaries since July 1984. Sampling was not conducted concurrently with the CBP water quality survey. The data (through 2011) are available on both the CBP (<u>http://www.chesapeakebay.net/data</u>) and Versar (<u>http://www.baybenthos.versar.com/</u>) web pages. The data include taxonomic identifications and counts of species, determination of sample biomass, sediment analysis and hydrographic profiles. The protocol for selection of sampling stations, collection gear and methods of biomass analysis has changed over the history of the monitoring program. Throught out the program data were collected by staff from Versar Incorporated, for MDE/MDDNR.

Virginia Benthic Count, Biomass, and Sediment and Bottom Water Analyses Survey. Data were collected at fixed sampling stations in the lower Chesapeake Bay and its Virginia tributaries since July 1985 and in the Elizabeth River monitoring data since January 1989. Prior to 1996, sampling was done quarterly and separately from the regular CBP water quality surveys. In 1996 sampling at existing fixed stations was cut back to twice a year, and a random site sampling component was added. The data (through the last calendar year) are available on the both the CBP (<u>http://www.chesapeakebay.net/data</u>) and ODU benthic (<u>http://www.sci.odu.edu/chesapeakebay/data/benthic/index.shtml</u>) web pages. Locations of the fixed sampling stations deviate slightly from those in the CBP water quality and plankton monitoring program. The files include taxonomic identifications and counts of species, biomass determinations, sediment analysis and hydrographic profiles. Data were collected by staff from ODU for VADEQ.

Virginia Benthic Sediment Profile Images (SPI) and Image Analysis Surveys. Data were collected concurrently with the benthic monitoring sample collection at all fixed and random sampling stations in the lower Chesapeake Bay and its Virginia tributaries between 1996 and 1998. Sampling is done twice annually and separately from the regular CBP water quality surveys. The data files include image analysis of the vertical sediment profiles. The data and actual images are also available by request. Data was collected by staff of VIMS for VADEQ.

NOAA Status and Trends Program Benthic Studies. In 1998, 1999, and 2001, NOAA National Status & Trends Program (NS&T) conducted a study to assess the environmental condition of Chesapeake Bay. A total of 210 randomly located stations were sampled during the month of September. The upper Maryland portion of the Bay was sampled in the first year of the study, and the lower Maryland and Virginia portions of the Bay were sampled in the second and third years of the study, respectively. The NS&T program collects synoptic measures of (1) general habitat condition (depth, physical properties of water, sediment grain size, organic carbon content), (2) pollution exposure (sediment contaminant concentrations, sediment toxicity, low dissolved oxygen in the water column), and (3) biotic conditions (diversity and abundance of macroinfauna). The data is only available from the Living Resources Data Manger/Analyst by request.

Historic Benthic Count, Sediment and Bottom Water Analyses Studies. Data were collected at fixed sampling stations in the Chesapeake Bay and some of its tributaries prior to 1984. These data sets complement and enhance the ongoing long term CBP benthic monitoring programs, which began in 1984. In all cases, the authors retained the raw data from these studies. Dr. Robert Diaz, VIMS, reformatted the following data sets to the CIMS/CDE database structure:

STUDY SITE	DATE	REFERENCE
Piney Point, Potomac River	1975	Virnstein & Boesch, 1975
Possum Point, Potomac River	1977-1978	Ecological Analysts, 1979
Tangier Island, Chesapeake Bay	1975	Orth & Boesch, 1975
Amoco Refinery, Lower York River	1977	Hinde, 1981
Thimble Shoals, Chesapeake Bay	1981	Hobbs et al., 1985
Warwick River, James River	1975-1976	Diaz & Boesch, 1976
Hampton Roads to Richmond, James River	1981	Schaffner et al., 1987

Table 1. Summary of Historic Virginia Benthic Studies.

The studies were combined into single files for taxon counts, sediment water analysis and bottom water analysis and event information. These related data sets are available through the CBP web page.

Submerged Aquatic Vegetation Surveys

Virginia Institute of Marine Sciences Chesapeake Bay Aerial Surveys

Chesapeake Bay SAV data were mapped from aerial photography, primarily at a scale of 1:24,000, for the following regions: western shore, Va. only - 1971 & 1974; lower Bay, Va. only - 1980 & 1981; upper Bay, selected sections, 1979; Baywide, 1978, 1984 - 1987, and 1989 - 2010. Each area of SAV was classified into one of four density classes by the percentage of cover as determined from the aerial photography. Starting in 2010, the SAV beds are stored as ArcGIS shapefiles using the quality control procedures documented in the individual metadata files. Data for prior years are stored as ArcInfo GIS coverages. Data were collected by the Virginia Institute of Marine Science (VIMS) and can be attributed by including a reference to the associated annual SAV distribution and abundance report.

The SAV data files for years prior to 2010 are in uncompressed ArcInfo (ESRI, Redlands, CA) export format. They have been compressed using pkzip compression to form .zip files for use on Windows-compatible personal computers and also compressed using UNIX standard compression to form .tar.Z files for use on UNIX platforms. Each file contains both the .e00 ARC/INFO export file and also a .txt metadata file. Starting in 2010, the .zip file contains a shapefile and metadata xml file. The Internet address for the VIMS SAV web page is: <u>http://www.vims.edu/bio/sav/index.html</u>

CHESAPEAKE BAY WATERSHED MONITORING DATA

Watershed Wide Non-Tidal Benthic Macroinvertebrates. The CBP Data Center has acquired historical and current benthic macroinvertebrate, habitat, and water quality data for non-tidal streams and wadeable rivers from over 20 federal, state, regional, local, and academic monitoring programs throughout the Chesapeake Bay basin. Only monitoring data collected using a version or modification of the US Environmental Protection Agency (US EPA) Rapid Bioassessment Protocols (RBP) (Barbour et.al. 1996) were included in the database. Data has been obtained from the data providers, reprocessed, and quality checked and assured. The data are used to compute the annual Chessie B-IBI an indicator of local stream health for the watershed. Most data originators are allowing their monitoring data, calculated biological metrics and Chessie B-IBI data to be distributed by the Bay Program. As of June 2012 from the following monitoring programs are available online:

AGENCY_PROGRAM_NAME	Begin Date	End_Date
Anne Arundel County Maryland- Watershed, Ecosystem, and Restoration Service	3/8/2004	4/14/2008
City of Baltimore- Stream Monitoring Program	4/3/2002	5/12/2011
Baltimore County Maryland- Watershed Management and Monitoring Program	4/1/2003	4/29/2008
District of Columbia-Stream Monitoring Program	6/19/2003	8/26/2009
State of Delaware- Biological Monitoring Program	3/20/2000	11/8/2010
Frederick County Maryland Watershed Management Program	6/7/1999	9/18/2009
Fairfax County Virginia-Stream Quality Assessment Program	4/18/1999	10/3/2008
Howard County Maryland Bio-Monitoring and Assessment Program	3/7/2001	3/30/2009
Loudoun County Virginia-Stream Quality Assessment Program	3/27/2009	10/12/2010
Montgomery County Maryland- Department of Environmental Protection	9/1/1989	4/13/2009
New York State Routine Statewide Monitoring Program	7/29/2002	8/7/2008
Pennsylvania Department of the Environment-Water Monitoring Programs	3/12/1999	8/9/2011
Prince Georges County Maryland-Programs and Planning Division	6/23/1994	4/7/2008
Susquehanna River Basin Commission-Watershed Assessment Programs	4/14/1986	2/8/2011
EPA-EMAP Wadeable Stream Assessment Program	4/27/1993	9/13/1996
EPA-Mid-Atlantic Highlands Assessment	5/21/1997	9/14/1998
EPA-Wadeable Stream Assessment Program	7/20/2004	11/10/2004
National Forest Service Stream Assessment Program	5/18/2000	5/8/2003
USGS-National Water Quality Assessment Program	6/2/1993	8/27/2008
Virginia Department of Environmental Quality- Non-Tidal Stream Monitoring Program	5/20/1992	6/8/2011
Virginia Commonwealth University- Interactive STream Assessment Resource Program	1/1/1999	11/3/2011
West Virginia Division of Water and Waste Management Stream Assessment Program	8/19/1996	8/9/2011

Table 2. Summary of Currently Available Non-Tidal Macroinverebrate Data by Program and Date Range.

Note: At this time, the Chesapeake Bay Program is unable to provide Maryland Department of Natural Resources Biological Stream Survey primary data to our users. We apologize for the inconvenience. Please contact the following individual for all MBSS data requests:

Michael Kashiwagi Maryland Department of Natural Resources Monitoring & Non-Tidal Assessment Division 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 E-mail: mkashiwagi@dnr.state.md.us

GEOGRAPHIC INFORMATION SYSTEM MAPS, DATA AND SERVICES

The CBP Data Center generates a variety of geospatial data and related products that are relevant to Biological data applications. Biological data available from the CBP Resource Library (<u>http://www.chesapeakebay.net/data#programs</u>) include tidal benthic, plankton and fluorescence data as well as links to biological data developed and maintained by CBP Partner organizations. CBP also maintains the spatially referenced Chesapeake Bay water quality and point source data bases and a series of land cover and associated data products for the Chesapeake Bay watershed. Other categories of GIS data created by other agencies or organizations but maintained by CBP include boundaries, cultural resources, recreation, cadastral, elevation, hydrography, land resources and transportation.

The CBP maintains a suite of indicators that contain geospatial representations of Bay and Watershed Health. Online maps of these indicators are updated annually to reflect the most recent interpreted data. Geospatial data and map services are available for the following Bay and Watershed Health Indicators by contacting the CBP GIS Team.

- Bay Grass Abundance Percent of Goal Achieve by Segment
- Phytoplankton Monitoring Station Scores and Percent of Stations Passing by Segment
- Bottom Habitat Monitoring Station Scores and Stations Passing by Segment
- Shad Abundance
- Health of Freshwater Streams in the Chesapeake Bay Watershed

In addition to annual tracking of health indicators throughout the Bay and the watershed, the CBPpublishes map services representing geospatial elements of the CBP Decision Framework through Chesapeake Stat (stat.chesapeakebay.net). Chesapeake Stat includes a public website that promotes improved accountability, fosters coordination, and promotes transparency by sharing performance information on goals, indicators, strategies, and progress towards goals. Where possible and appropriate, maps and geospatial data are presented for each of the CBP Goal Implementation Teams and their respective Workgroups. Maps published to Chesapeake Stat are continually updated and are accessible to partners and other users for incorporation into other applications. Geospatial data presented via Chesapeake Stat may be available by request from the CBP GIS Team provided the data is not maintained or under custodianship of another agency. Please check with the CBP GIS Team for specifics (See Appendix D).

Finally, the CBP is in the process of creating a comprehensive, integrated catalog to promote accessibility, discovery, interoperability, and reuse of key CBP data resources. This metadata catalog (anticipated to be available by the end of 2012) will be available to the public and will be integrated with Data.gov, as well as the U.S. Environmental Protection Agency enterprise metadata portal the Environmental Dataset Gateway.

OBTAINING MONITORING DATA

INFORMATION ACCESS THROUGH CHESAPEAKE DATA ENTERPRISE

A major component of the CDE and its predecessor the CIMS network is to establish user interfaces for information retrieval. The primary user interface is the data users World Wide Web browser. Users can search and download monitoring data, summary statistics and indicators, data documentation, key data management documents and data inventories from several interfaces via the CBP web site. The biological monitoring data can be obtained geographically, chronologically and programmatically. Customized data sets are generated when a data user submits search criteria (time, geographic location, data type, etc.) to a monitoring database. Search results are returned to the user, as comma or tab delimited ASCII flat files or XML Schema formatted files. Routine monitoring data is also becoming increasingly accessible through the GIS based Bay Stats web application. This interface enhancement will allow for geographic and graphical analysis of data online. Other CBP databases and data management "tools" (e.g. QA/QC programs, documentation, and conversion tables and algorithms to calculate indicators) are being added to the web page server in installments.

CIMS/CDE WORLD WIDE WEB ACCESS

The CBP has developed user-friendly graphical web interfaces for its relational databases of monitoring data to allow data users self serve data retrieval. All biological point data sets and data documentation files are available online. A data user can now come to the web site, select basic data search criteria (data type, time range, geographic area of interest, etc) and then submit data search criteria to the database. In turn the database will execute a search and return all the monitoring data which fits the search parameters. Data can then be saved to the users local PC in an increasing number of formats.

Typical World Wide Web Data Retrieval from www.chesapeakebay.net

- 1) Login to your local machine with Internet access as usual.
- 2) Open your World Wide Web browser.
- 3) Type in the URL www.chesapeakebay.net.

4) Select the **Bay Resource Library** pull down menu on front of the CBP web page. Select **Bay Data** from the menu.

5) Scroll down to the Data Download section and under the heading Living Resources where the following options are available:

Baywide Benthic Database Baywide CBP Plankton Database Baywide Fluorescence Database Watershed Wide Benthic Invertebrate Database Baywide CBP Aerial SAV Survey (Exit CBP) Maryland Biological Stream Survey (Exit CBP) NOAA Fisheries Statistics and Economics Database (Exit CBP) 6) Select from any of the biological CIMS/CDE in-house data bases (**Plankton, Benthos, Fluorescence, and Watershed Wide Invertebrate**) from the list. There are also links to CIMS/CDE partner databases not served by the CBPO Data Center. Selecting any of these links will take you to a program partners website and their data interfaces.

7) Once a CBP biological database has been selected, the user will reach a page providing a description of the database and other pertinent metadata. Select the down load data button for your database of interest.

8) A new browser window will open and you will be prompted to select the type of data you wish to retrieve from the living resources database of choice. (Table 3)

PLANKTON	TIDAL BENTHOS	FLUORESCENCE	NON-TIDAL BENTHOS
STATION INFORMATION	MONITORING EVENT DATA	HORIZONTAL FLUORESCENCE	MONITORING EVENT DATA
MONITORING EVENT DATA	BIOLOGICAL EVENT DATA	VERTICAL FLUORESCENCE	HABITAT ASSESSMENT DATA
PHYTOPLANKTON DATA	SEDIMENT DATA		TAXONOMIC DATA
MESOZOOPLANKTON DATA	BIOMASS DATA		WATER QUALITY DATA
MICROZOOPLANKTON DATA	TAXONOMIC DATA		
PICOPLANKTON DATA	WATER QUALITY DATA		*INDICATOR EVENT DATA
JELLYFISH DATA	BENTHIC INDEX OF BIOTIC INTEGRITY DATA		*INDICATORS AND CALCULATED METRICSDATA
PRIMARY PRODUCTION DATA			*WAREHOUSE DATA
COMPOSITE METRIC DATA			
PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY DATA			

TABLE 3. Summary of Data Type Selections by Database. Note the * options are available by selecting the Indicators and Calculated Metrics option on the interface.

9) Once a data type has been selected, you will be asked to select how you wish to search data geographically. Geographic search options include USGS Hydrologic Unit Code (HUC), Federal Information Processing Code (FIPS), state, data generating agency, CBP monitoring segment (tidal data only), CBP monitoring station or water body. You will also be asked to select a time frame of interest for data retrieval. The temporal extent of available data will be displayed in a table under the date input boxes. Click the **Continue** button at the bottom of the page once all selection criteria have been input.

10) In the next window, select the geographic regions or stations of interest from the pull-down list. The contents of the pull-down list have been based on the type of geographic search selected in the previous window. Click the **Continue** button at the bottom of the page once all selection criteria have been input.

11) Next, a user identification box will appear. If this is the first time you have downloaded data from the CBP web site since October 1, 1999 please click the **Create User Profile** button and follow the directions that follow. Otherwise, enter your email address. Next select an output format (comma or tab delimited ASCII flat files or XML Schema formatted files) and destination for your query output (file or popup window). See Appendices A through C for details on data attributes and acceptable field values.

Creating a Data User Profile

1) Start by clicking the Create User Profile button.

2) A form will appear. Fill in your name, email address, zip code and pick the user type and data usage which best describes you.

3) Click the **Submit** button and return to Step 9 of the online data retrieval process.

Data on Media

Individuals without Internet access and/or users wishing to obtain complete databases can request data directly from the Living Resources Data Manager. Data can be sent via FTP transfer or CD-ROM depending on the size of the data set requested. Requests for biological GIS coverages or other GIS products should be sent to the Living Resources Geographic Information Specialist. All requests must be made in writing or by email. Data Center contact address and phone numbers are provided in Appendix D.

DISCLAIMER NOTICE: The CBP web page and all data documentation clearly request that data users acknowledge the original monitoring programs as the data originators in publications they reference or use the databases. Although these data have been processed successfully on a computer system at the Chesapeake Bay Program, no warranty expressed or implied is made regarding the accuracy or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. This disclaimer applies both to individual use of the data and aggregate use with other data. It is strongly recommended that careful attention be paid to the contents of the data documentation file associated with these data. The Chesapeake Bay Program shall not be held liable for improper or incorrect use of the data described and/or contained herein.

USING MONITORING DATA

Data availability and demand for data access have grown at exponential rates due to the extensive growth of the Internet. The combination of increased data access and new mechanisms to store and distribute data has radically changed data management. Providing adequate guidance to data users on correctly handling the databases and interpreting the data is a challenge. Unsatisfactory results may be due to the use of data that are unsuitable for the analysis, incorrect manipulation of data sets or incorrect interpretation of the information in a database.

Please read the data documentation files. Before you use data take time to become aware of the original objective(s) and sampling design of a study or monitoring program as well as the database structure. The data documentation files explain the details of sample collection and processing and the structure of the data files for each study. All of the data documentation sets have been written with the end data user in mind. They assume that a user has no previous knowledge of the data collection program. The biological data sets described in this document are typically either from large-scale monitoring programs or intensive, targeted studies. The Chesapeake Bay Program long term monitoring programs and other long-term monitoring efforts are often used to assess status and intended to detect changes and/or trends in the status of biological communities on a large scale. They were designed to be used in a wide variety of analyses. These monitoring programs may not have a spatial or temporal scale fine enough to answer many site or time-specific questions. However, they are often useful in answering complex, Baywide questions. Another portion of the data sets, predominantly the historic data sets, are targeted studies. These studies were originally designed to answer specific scientific or resource management questions on a fine scale. Therefore, sampling design, analytical protocol or site selection criteria may preclude or obscure elements of the data set critical for your analytical questions.

MERGING CIMS/CDE DATA FILES

This section provides guidance on how to merge related files retrieved from the CBP web data interfaces. The Chesapeake Bay Program relational database structures and formats are discussed in the appendices of this document. Actual field names and attributes appear in Appendix A and online in the individual data set documentation files. A list of possible CBP field names for biological data, and their definitions and units, are provided in Appendix B. Appendix C contains definitions of parameter and look-up codes used in the databases.

All data downloaded from the plankton database (Phytoplankton, Mesozooplankton, Microzooplankton, Picoplankton, Jellyfish, Primary Production, Composite Metric and Phytoplankton Index Of Biotic Integrity Data) can be merged with their sampling event files by linking directly on the SURVEY_ID field or the combination of the following fields:

SOURCE SAMPLING_DATE STATION LAYER

Fluorescence data is collected concurrently with plankton sampling in many cases. The fluorescence and plankton data reside in separate data bases. Linking the plankton SURVEY_ID field with the fluorescence FIELD_DATA_INDEX will result in mismatched data. The Vertical Fluorescence files can be merged with plankton sampling event files by linking on the combination of the following fields:

STATION SAMPLING_DATE

All data downloaded from the Tidal Benthic database (Benthic Taxon, Benthic Biomass, Sediment, Water Quality, Biota Event and Benthic Index of Biotic Integrity Data) can be merged with their Monitoring Event files by linking directly on the EVENT_ID field or the combination of the following fields:

SOURCE STATION SAMPLING_DATE SAMPLE NUMBER (for taxon, biomass, benthic index data)

All data downloaded from the Non-Tidal Macroinvertebrate database (Habitat Assessment, Taxonomic, Water Quality, Indicators and Calculated Metrics, and Warehouse Data) can be merged with their Monitoring Event files by linking directly on the EVENT_ID field or the combination of the following fields:

SOURCE STATION SAMPLING_DATE SAMPLE_TIME

BIOLOGICAL DATA QUALITY ASSURANCE ISSUES

The goal of quality assurance is to provide the user with data of known high quality. The first stage of quality assurance is quality control (QC), which is performed by personnel in the field and laboratory to ensure that data meet quality standards. Quality assurance assessments for all data analyses measure two quantities, precision and accuracy. Precision is the repeatability of measurements, and accuracy is the closeness of analytical measurements to a "true" value. In the case of biological data, enumeration accuracy is often method and personnel dependant. Although the accuracy of taxonomic identifications can only truly tested through cost prohibitive genetic analysis, accuracy is approximated well by consultation with taxonomic experts and the use of voucher collections.

Intra-organization QAQC

Among the CBP biological programs, participating data providers have internal quality assurance/quality control programs. To assess within-organization precision and accuracy, most programs standard protocolise randomly selected and re-enumerated approximately 5-10% samples for quality assurance. The QA sample assess, emt must have a total density and dominant taxa densities within 10% of the original count. For CBPO funded or match programs, quality assurance recount data are submitted to CBP separately from the rest of the long term monitoring data and are maintained in an offline data base. The QA recount data are available upon request.

Inter-organization QAQC

Inter-organization precision and accuracy assessments have been problematic in the biological monitoring programs. The tidal benthic monitoring programs established and continue to maintain an informal quality assurance program between participating labs during the early phases of the program. However, a program of regular quality assurance /quality control and split-sample comparisons between laboratories was not part of either the phytoplankton or zooplankton long-term monitoring programs prior to 1998. From 1998 through 2008 a split-sampling program was conducted to compare results of the Maryland and Virginia mesozooplankton, microzooplankton and phytoplankton long-term monitoring programs. The non-tidal benthic monitoring programs currently have no mechanism for assessing precision and accuracy between data providers.

TITLE: Phytoplankton Counts PARAMETER NAME: COUNTS UNITS OF MEASURE: Number of Cells per liter METHOD CODES: PH101, PH102, PH102M, PH103

GENERAL INFORMATION:

The Chesapeake Bay phytoplankton monitoring data from the mainstem and tidal tributaries of Maryland and Virginia collected prior to 2005 are not entirely comparable. While each lab used a version of the Utermohl counting methodology, differences in microscopic enumeration procedures produced data with significant method biases. In the Maryland phytoplankton program between 1984-2004 the counting procedure consisted of a two step procedure (USEPA Chesapeake Bay Program, 2006A). The primary counting magnification was 500X and 20 random fields were counted with a 200 cell count minimum. A secondary scan of 20 random fields to find the rarer, larger forms of the counting chamber was performed at 312X. In the Virginia phytoplankton monitoring program between 1985-2004 a three step counting procedure was used (USEPA Chesapeake Bay Program, 2006B). The primary counting magnification was at 300X and 10 random fields were counted with a 200 cell minimum. A secondary count of 10 random fields at 600X was performed to enumerate small cells not discernible at the 300x counted at 600X. In the final step, the entire counting chamber was scanned at 150X for previously unrecorded larger species in the chamber. Another fundamental difference in these counts was the definition of an algal unit for enumeration. Virginia considered each colony, trichome or filament to be a single algal unit. Maryland considered each cell within a colony, tricome or filament to be an algal unit. Based on comparison counts between the two labs, the end product of these counts at different magnifications was that Maryland produced higher counts of smaller cells (<5 microns) and less precise estimates of colonial or filamental forms due to lower raw counts. Virginia data consistently had higher species diversity. Based on this information and the results of the split sample comparisons, prior to 2005 Maryland and Virginia abundance data should be analyzed separately for baywide status and trends.

Maryland Enumeration protocol from 1984-2004

-Chesapeake Bay Program Analytical Method Code PH101

Samples are gently mixed and a 1-25 milliliter aliguot is transferred to a settling chamber. The aliguot is brought up to 10-50 milliliter with deionized water (depending on the volume of the settling chamber). After a settling period of 2-48 hours (depending on the volume of the settling chamber), the settled material is examined at 400X or 500X and 250X or 312X using a Leitz Diavertla inverted microscope. Identification and enumeration of the dominant taxa, including detailed counts of the species, are made yielding densities (cells/liter) of individual taxa as well as the total assemblage. A minimum of twenty random fields and 200 individual cells (not including blue-green spheres) are counted at 500X-400X. The 312X-250X count consists of the examination of twenty random fields counted for the rarer forms not encountered in the high magnification counts. In 1989 after doing a comparison with epifluorescence microscopy unidentified blue green spheres were no longer enumerated due to the inaccuracy of the Utermohl method in estimating numbers of these cells. The remainder of the sample is permitted to settle for at least 72 hours before concentrating the volume to 20-25 milliliters for archiving.

Virginia Enumeration protocols from 1985-2005

<u>-Chesapeake Bay Program Sample Analysis Method PH102</u> The 500 ml replicate sample sets are mixed (1000 ml), then 500 ml are withdrawn and allowed to settle undisturbed for 72 hours, the original 500 ml is reduced by careful siphoning to approximately 200-250 ml. The samples are allowed to stand undisturbed for an additional 48 hours and are again siphoned to 20-40 ml concentrates. The final 20-40 ml concentrate is transferred to a previously labeled storage vial. where the label information from the collection bottle has been transferred and verified by the laboratory supervisor. A known volume of the entire concentrate will be placed in an Utermöhl settling chamber for

The 2012 Users Guide to CBP Biological Monitoring Data

examination with an inverted plankton microscope. If the phytoplankton, and/or silt density is too great in the final concentrate for clear examination, a known volume of the concentrate is drawn off to provide a sub-sample suitable for analysis. The microscopic examination was done at 3 magnifications (Marshall and Alden, 1990). At 300/315X magnification, a combined random field (10) and minimum cell count (200) procedure will be followed where all taxa are counted to the lowest taxonomic category possible. This examination is repeated at 500/600x magnification for 10 randomly selected fields. Cells not clearly discernible at the 300x magnifications. In addition, the entire chamber will be scanned at 150X for recording previously unrecorded larger species in the chamber. All phytoplankton categories will be included in this analysis, including colonies and algal filaments at 300/315X. Note that in August 2002, ODU purchased new inverted plankton microscopes changing their mid- and high magnification from 315/500X to 300/600X, with magnification constants adjusted accordingly. No apparent step trend have been noted in the data due to this change.

-Chesapeake Bay Program Analytical Method Code PH102M

Counting Method 102 was slightly modified in January 2005 for better agreement with the new counting methodology adopted in the Maryland Phytoplankton program. Beginnings in 2005, at 600X all cells were indentified using the following categories:

Centric Diatoms < 10 microns Cryptomonas <10 microns Pennate Diatoms< 10 microns Unidentified Green Cells 3-5 microns Unidentified Microphytoflagellates <10 microns All other protocol for sample enumeration remained the same as method PH102.

The Chesapeake Bay Program Standard Enumeration protocol from 2005-Present

-Chesapeake Bay Program Analytical Method Code PH103

In January of 2005 in Maryland and October 2005 in Virginia, the following enumeration technique was instituted for all Chesapeake Bay Program supported phytoplankton enumerations. The final samples for enumeration are gently mixed and a 1-25 milliliter aliquot is transferred to a settling chamber. The aliquot is made up to 10-50 milliliter with deionized water (depending on the volume of the settling chamber). After a settling period of 2-48 hours (depending on the volume of the settling chamber), the settled material is examined at three magnifications inverted microscope. Identification and enumeration of the dominant taxa, including detailed counts of the species, are made yielding densities (cells/liter) of individual taxa as well as the total assemblage.

- Each subsample was enumerated using the standard 3 magnification protocol:
 - At high magnification (either 500X or 600X), only representatives within the size categories of the following groups were counted. At this magnification, 20 random fields were examined to obtain mean values.
 - Diatoms < 10 microns in length for pennates, or diameter for centrics
 - Cryptomonads < 10 microns in length
 - Unidentified micro-flagellates < 10 microns in size
 - Unidentified "green" cells <10 microns in size
 - At 300X or 312X, all common representatives of the phytoplankton not included above or at the lowest magnification were counted. At this magnification, a minimum of 10 random fields were counted and a minimum cell count of 200. In the unidentified pennate and centric diatom groups, the following size categories were used: 10-30, 31-60, and > 60 microns in size. This last category would not include the diatoms listed under the low magnification scan. Taxa with fewer than 3 cells identified at the mid magnification are counted at the lowest magnification.

 At the lowest magnification (e.g. 125X or150X) a scan of the entire settling chamber bottom is conducted. Counted will only be the rare rather large-sized taxa not included in the above analyses. These taxa are generally few in number compared to others and stand out for easy identification at this low magnification.

OTHER ISSUES:

- 1) The Virginia sample enumeration technique includes a special effort to identify smaller, rare species below 8 microns in size. This procedure was not added to the Maryland protocol until 2005. The resulting Virginia data will have greater species diversity compared to Maryland samples.
- 2) The species *Merismopedia* and *Agmenellum* have been determined to be synonymous. The currently accepted literature name for this species is *Merismopedia*. As of January 1999 all programs will switched to the accepted species name. The Maryland phytoplankton monitoring program has previously used the *Agmenullum* name.
- The Maryland method counts individual cells when blue-green trichomes are observed. The Virginia program counts only whole trichomes. After January 1999 the Virginia program adapted the Maryland protocol.
- 4) The Maryland method counts individual cells within filamentous and colonial forms toward the 200 minimum cell count, while Virginia method counts an entire filament or colony as one algal unit toward the 200 minimum count. Since precision is based on the number of homogeneous cells counted, Maryland samples where filaments and colonies occur would be expected to have a lower precision.
- 5) Composite samples: It should be noted that the CBP sampling protocol utilizes composite samples. There are no samples for individual depths. At each station, samples were pumped from five discrete depths in the surface layer above the pycnocline (or top half of the water column if a pycnocline is not evident) and composited in a 20-gallon carboy on shipboard. Plankton samples for enumeration are then drawn from the well mixed carboy.
- 6) Maryland SAMPLE_NUMBER: Note that the Maryland SAMPLE_NUMBERs are sample identifiers; they are not synonymous with a replicate number. Please perform a count of SAMPLE_NUMBER by STATION, SAMPLE_DATE, LAYER and SOURCE to determine the number of replicate samples taken at a station.
- August 2002: ODU purchased new inverted plankton microscopes changing their mid- and high magnification from 315/500X to 300/600X, with magnification constants adjusted accordingly. No apparent step trend has been noted in the data due to this change.

OTHER DOCUMENTATION:

Alden, R., H. Marshall, and K. Sellner. 1997. Phytoplankton indicators within the Chesapeake Bay Monitoring Program. Old Dominion University Research Foundation, AMRL Tech. Rpt. 3051. Norfolk, Va.,112 pp.

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Phytoplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/phyto/mdphdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Phytoplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/phyto/vaphdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). The 1998 - 1999 Split Sample Study for Chesapeake Bay Program Phytoplankton, Microzooplankton and Mesozooplankton Monitoring Components.URL ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/SplitSmplReport-1988-1989.pdf

USEPA Chesapeake Bay Program (2012, February 22). An Analysis of 2006 Chesapeake Bay Monitoring Program Phytoplankton Split Sample Data.URL ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/report_2006_final.pdf

TITLE: Picoplankton Counts PARAMETER NAME (NEW): COUNTS UNITS OF MEASURE: Number of Cells per liter METHOD CODES: PP101, PP102

GENERAL INFORMATION:

The 2008 phytoplankton split sample program examined the comparability of picoplankton counts between program participants. The resulting split sample analysis showed high agreement (±5% difference) between laboratory counts. This suggest that despite the known differences in microscopes, filter cubes and internal laboratory procedures, if like volumes of sample are enumerated good precision between the labs can be obtained.

Virginia Enumeration protocol from 1998-Present

-Chesapeake Bay Program Sample Analysis Method PP101

When brought to the phytoplankton laboratory, samples (125 ml) will be stored in a refrigerator at 4°C and the counting procedures will be completed within 7-14 days after their collection date. Using a millipore apparatus, a backing 0.45 um nuclepore filter, wetted with distilled water, is placed on the millipore stem. Then a blackened 0.20 um nuclepore filter, is placed over the other filter. 1-2 ml of the shaken water sample is added to the filter apparatus. Using a pump, and a maximum vacuum pressure of 10 cm OF Hg (13.3 kPa), the sample is filtered until the meniscus disappears from the top filter. The 0.2 um nuclepore filter is removed and placed immediately on a glass slide previously moistened with breath. A drop of immersion oil (Cargille type A, refractive index 1.515) is placed at the center of the filter, and then a cover glass is added, followed by another drop of immersion oil to the cover glass. The slide is examined immediately with an epifluorescence microscope equipped with a 100-W Hg lamp and a 100X oil immersion objective (Neofluar 100/1.30) at 1000X magnification. Using an appropriate filter set random field counts are made on both replicate samples, and averaged. A minimum coverage of 20 fields is the procedure followed for each slide. Cells not counted here are those previously identified and counted with the phytoplankton sample at 300x or 600X (e.g. some *Merismopedia* spp.).

Maryland Enumeration protocol from 2002-Present

-Chesapeake Bay Program Analytical Method Code PP102

The field samples are returned to the lab and held in a refrigerator (4° C) until processing begins (≤ 7 days). Using a 25-mm Millipore filtration apparatus, a 0.45 µm backing filter is placed on the filter holder and moistened with distilled water. A 0.2 µm Irgalan black-stained nucleopore filter is placed on top of the backing filter and the filter chimney attached to the base. An appropriate volume of sample water (generally 1-2 ml) is placed in the chimney and filtered at a low vacuum pressure (~ 5 kPa). The nucleopore filter is removed from the base and placed in the center of a glass microscope slide. A drop of immersion oil (Cargille type A) is placed in the middle of the filter, a cover slip placed on top and another drop of immersion oil added on top of the cover slip. The slide is gently tamped with a paper towel and either examined immediately or placed in a slide box in a freezer until microscopic inspection occurs. The glass slide holding the sample filter is placed on a Leitz Laborlux compound microscope outfitted with a 50-W mercury bulb and inspected at a magnification of 1250X. The autofluorescence characteristics of the phototrophic picoplankton cells are detected by using two different filter sets - one with an excitation wavelength of 450-490 nm which excites the chlorophyll a and type I phycoerythrins (common to the dominant group of picoplankton - cvanobacteria), the other a vellow-green wavelength of 520-560 nm which illuminates the type II phycoerythrins and the phycocyanins. A minimum of 200 cells and 20 random fields are counted.

OTHER ISSUES:

- 1) The picoplankton count data are all identified taxonomically as Autotrophic Picoplankton in data set.
- 2) Composite samples: It should be noted that the CBP sampling protocol utilizes composite samples. There are no samples for individual depths. At each station, samples were pumped from five discrete depths in the surface layer above the pycnocline (or top half of the water column if a pycnocline is not evident) and composited in a 20-gallon carboy on shipboard. Picoplankton samples for enumeration are then drawn from the well mixed carboy.

OTHER DOCUMENTATION:

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Phytoplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/phyto/mdphdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Phytoplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/phyto/vaphdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22) An Analysis of 2006 Chesapeake Bay Monitoring Program Phytoplankton Split Sample Data. URL- ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/

USEPA Chesapeake Bay Program (2012, February 22) An Analysis of 2008 Chesapeake Bay Monitoring Program Phytoplankton Split Sample Data. URL- ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/

TITLE: Primary Production PARAMETER NAME (NEW): CARBONFIX UNITS OF MEASURE: Microgram Carbon Per Liter Per Hour METHOD CODES: PD101, PD 102

GENERAL INFORMATION:

It was determined that the Maryland and Virginia primary production measurements, should be analyzed separately due shipboard methodology differences. The historic Maryland protocol collected 15 liter samples and held the productivity samples at near-ambient temperatures and shipboard light conditions for 0.5 - 6 hours. Thus samples were able to begin acclimating to relatively high light levels on shipboard and samples may have experience above-ambient temperatures before they were placed in light-saturated, temperature-controlled incubation chambers in the laboratory. The historic Virginia protocol collected 1 liter samples and maintained productivity samples in a closed cooler on ice prior to being sent to the laboratory for analysis. Virginia's samples experienced below-ambient temperatures in all seasons but winter, and were acclimated to low light when they were placed in the incubation chambers. The end result of these protocol differences is that Maryland primary production rates appear to be consistently different (greater) than Virginia rates.

Maryland Sample Analysis Protocol From 1984-2009

-Chesapeake Bay Program Analytical Method Code PD101

At each station water column structure was assessed, water was pumped from five discrete depths above the pycnocline (or top half of the water column if a pycnocline is not evident) and composited in a 20-gallon carboy on shipboard. Two composite samples were collected at each station. Carboys were held in varying conditions, for <1 to >6 hours, depending on station, but procedures were consistent for each station. Pre-incubation history can be classified into four groups:

Group A - Samples immediately put in a shipboard incubator chamber.

- TF1.5 Patuxent River, tidal fresh
- CB1.1 mouth of the Susquehanna River, tidal fresh
- CB2.2 upper Bay mainstem, oligohaline (After February 2000)
- CB3.3 middle Bay mainstem, mesohaline
- CB4.3 middle Bay mainstem, mesohaline (After to February 2000)
- WT5.1 Baltimore Harbor, mesohaline

Group B - Unprotected samples which were taken immediately to shore, and transported between 1 - 2 hours in a van to the laboratory where they were placed immediately in the laboratory incubator. Air temperature in the van was somewhat warmer than ambient in winter. The van was not air conditioned in summer prior to 2005, and summer samples may have experience very warm temperatures. The samples also experience extremes in light conditions, from direct sunlight on shipboard to the interior darkness of a van.

TF2.3 (~ 2 h) - upper Potomac River, tidal fresh

LE2.2 (~1 h) - lower Potomac River, mesohaline

CB5.2 (~1 h) - middle Bay, mesohaline

Group C - Samples were kept on shipboard in an unshaded, ambient temperature water bath anywhere between 1 and 5.5 hours, then put in a shipboard incubator.

CB2.2 – (~?) upper Bay mainstem, oligohaline (Prior to February 2000)

TF1.7 (~1 h) - middle Patuxent River, oligohaline

LE1.1 (~2.5 h) - lower Patuxent River, mesohaline

CB4.3 (~5.5 h) - middle Bay mainstem, mesohaline (Prior to February 2000)

Group D - Samples were held unprotected on shipboard & van (~ 5 hours) or in the van (~3-4 hours), then placed in the incubator. Samples experience temperature conditions that differ from the ambient, i.e. typically colder in winter and hotter in summer. The van was heated in winter but

not air conditioned in summer prior to 2005. The samples also experienced extremes in light conditions, from direct sunlight on shipboard to the interior darkness of a van.

ET5.1 (~ 3 h) - upper Choptank, oligohaline

ET5.2 (~ 4 h) - lower Choptank, mesohaline

RET2.2 (~ 5 h) - middle Potomac River, oligohaline

Productivity incubation were performed either on shipboard, on a dock, or immediately upon returning to the laboratory. Four 100 ml subsamples per station were decanted from the two surface-layer composite samples into sample-rinsed Pyrex milk dilution bottles (or polycarbonate bottles after July, 1989). One was used for a time-zero C¹⁴ blank (t₀), one for an alkalinity determination, and one from each composite for C¹⁴ incubation. The incubation samples were placed in a constant light incubator (>250 μ E m⁻² sec⁻¹) receiving running water maintained at ambient temperature for an acclimation period of more than 0.5 h. and usually about 1 h. A 1-ml inoculate of 1-2 µCi labeled NaHCO₃ was added to each sample, and the samples were returned to the incubator for >1 h. After incubation, 15 ml was filtered through a 0.45 µm Millipore membrane filter, rinsed with filtered sample water, and fumed over concentrated HCI. Fifteen ml of the t₀ sample was similarly filtered and fumed, immediately following the addition of the radioisotope. The filters were placed in scintillation vials and stored in a freezer. Scintillation cocktail (Aquasol from August 1984 to October 1994; Cytoscint from October 1994 to present) was added to the scintillation vials and the samples were run on a Packard Tri-Carb 2500TR Liquid Scintillation Analyzer equipped with internal quench standards and serviced once a year by the Packard technician. Field stock solutions of radio-labeled NaHCO₃ were obtained from mixing portions of 25 mCi C¹⁴ NaCO₃ stock solutions with pH of 10-10.2 de-ionized water. Final field stock activities approximate 2 µCi C¹⁴ per ml, determined from liquid scintillation counting of field stocks in phenethylamine and Biofluor. Field stock activities for each dilution are then recorded in a laboratory log and were assigned a date interval corresponding to the period that the field stock is employed in the program.

Virginia Sample Analysis Protocol from 1998-2009

-Chesapeake Bay Program Sample Analysis Method PD102

At each station water column structure was assessed, then water was pumped from five discrete depths above the pychocline (or from top half of water column if pychocline is absent) and composited in a carboy. Two composite samples were collected at each station. Two 1-liter water samples were obtained from each of the two carboys (total of 4 per station) and placed in an iced cooler until their return to the laboratory. The Virginia protocol held all its samples for <1 to >6 hours on shipboard. Productivity incubation were performed immediately upon returning to the laboratory. Two 100 ml subsamples were obtained from each station's two 1-liter composite samples (four from each station). One was used for an alkalinity determination, one was used for a time-zero C^{14} blank (t₀) after acclimation, and one from each composite was used for the C¹⁴ incubation. Samples were placed in a water bath equipped with a bottle holder which rotated between banks of cool-white fluorescent lights. The light levels exceed the light saturation point of the phytoplankton. Temperature of the water bath was the same as the temperature at each station when the samples were taken. After one hour of acclimation, the bottles were inoculated with 2-5 Ci C¹⁴ NaHCO₃. One of the samples was analyzed for C¹⁴ activity immediately (time 0 sample). Two samples were returned to the water bath for approximately one hour. All inoculated samples were filtered through a 25 mm 0.45 pore-size Millipore filter under a vacuum pressure < 5 cm Hg pressure. The Millipore filters were fumed over concentrated HCI for 30 seconds and placed in scintillation vials. Scintillation fluid was added to each vial and C^{14} activity was determined using a Beckman Model LS 1701 scintillation counter. The amount of C¹⁴ in the stock bottle was determined by placing 20-50 µl of stock solution in scintillation vials containing 0.5 ml phenethylamine. Scintillation fluid was added to the vials, set in the dark overnight, and analyzed for C¹⁴ activity.

OTHER ISSUES:

- Maryland SAMPLE_NUMBER: Note that the Maryland SAMPLE_NUMBERs are sample identifiers; they are not synonymous with a replicate number. Please perform a count of SAMPLE_NUMBER by STATION, SAMPLE_DATE, LAYER and SOURCE to determine the number of replicate samples taken at a station.
- 2) Virgina data prior to 1995 lacks concurrent measurements of chlorophyll a for determination of assimilation ratio (production efficiency).

OTHER DOCUMENTATION:

Buchanan, C. (2006) Measurements of C:Chl *a*, Pmax, Topt, and Other Model Parameters in Natural Phytoplankton Populations of the Chesapeake Estuaries. ICPRB Report 06-1, Rockville Md. 70 pp.

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Primary Production Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/prod/mdpddoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Primary Production Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living Resources/plank/prod/vapddoc.pdf

TITLE: Microzooplankton Counts PARAMETER NAME (NEW): COUNTS UNITS OF MEASURE: Number per liter METHOD CODES: MI101, MI102, MI103

GENERAL INFORMATION:

There were many differences in the in the collection and enumeration protocols used by the states of Maryland and Virginia during the microzooplankton monitoring program. Methodological differences were so great that the two data sets are unsuitable to be combined for bay wide analyses. Furthermore the split sample comparisons of the 1989-2002 monitoring data revealed multiple data quality assurance issues with some of the data generated by the Virginia program. Baywide CBP sampling for microzooplankton at all stations ended in September 2002 due to the termination of the CBP zooplankton monitoring program in October 2002.

The microzooplankton monitoring programs in Chesapeake Bay were established with fundamentally different goals. The Virginia monitoring program which ran from 1993-2002 was a broad based survey and enumerated all major microzooplankton groupings. The Maryland program which ran from 1984-2002 was focused on enumerating the portion of the microzooplankton community which serves as larval fish food (>44um). Furthermore each state had differing definitions of what constituted microzooplankton. Virginia used a classical definition of microzooplankton as being zooplankton 20-200 µm in size and reported counts in eight taxonomic categories. The Virginia size cutoffs for tintinnids and non-loricate ciliates were based on widths while Maryland's size categories are based on length. After January 1999 Virginia adopted the Maryland method of enumerating all ciliates and did not drop ciliates < 20 µm in width from counts. The Maryland program considers nauplii, polychaete larvae and cladocerans to be mesozooplankton and did not count any organisms from these groups. These organisms were enumerated in the Maryland mesozooplankton program. Maryland also counted the non-loricate ciliates and tintinnids that are less than 20 µm in size. Maryland used a net sampling protocol which was inappropriate for the identification and quantification of ciliates because of their size (often < 44µm) and fragile nature. Therefore, from 1998 through 2000, whole water microzooplankton samples were taken at the mesohaline stations between March - September, in order to quantify the ciliates. The Maryland performed taxonomic enumerations down to the lowest taxonomic level possible (generally genus or species). The following table lists the differences between Maryland and Virginia in defining various taxonomic groups of microzooplankton:

GROUP	VIRGINIA	MARYLAND
Copepod nauplii	All, length <200 μm	All
Rotifers	All, length <200 µm	All
Sarcodinids	All	All
Tintinnids	All >20 µm in width, length doesn't matter	All in mesohaline All > 44 µm lenght in other salinities
Non-loric ciliates	All > 20 μ m in width, less than 200 μ m in	All in mesohaline, All > 44 μ m length in other
	length	salinities
Barnacle nauplii	All < 200 µm in length	None
Polychaete	All < 200 µm in length	None
larvae		
Pelecypod larvae	All < 200 µm in length (In other category)	All
Gastropod larvae	All < 200 µm in length (In other category)	All
Cladocerans	All < 200 µm in length	None

Table 4. Comparison of Microzooplankton size classes

Maryland Enumeration protocols from 1984-2009

-Chesapeake Bay Program Laboratory Method Code MI101

Protocol for the enumeration of net collected microzooplankton samples. Samples were collected in the field by pumpling a known quantity of water through a 44 µm mesh net. All samples collected in 44 µm mesh nets are decanted into a jar containing buffered formaldehyde (final concentration of 2%) and transferred to the laboratory. Samples were gently mixed and a 1-milliliter aliquot is removed with a Stempel pipette and put into a Sedgewick-Rafter cell for enumeration with a compound microscope at 100X magnification. Beginning with samples collected in April 1986, a small drop of concentrated Rose Bengal stain was added to the cell prior to addition of the sub sample. The sub sample was allowed to set for 10 minutes before counting. At least one chamber (1 milliliter) was counted for each sample and if the total count did not reach 250 organisms, subsequent 1 milliliter aliquots were enumerated until a count of 250 or more organisms was obtained or 3 milliliter was examined. If a certain organism was abundant (more than 60 per chamber), it was not counted in the subsequent 1 milliliter aliquot for a given sample. For extremely abundant taxa, less than one milliliter could be counted. Species identification were made using the NODC species code. Microzooplankton smaller than 44 micrometers were noted on the original data sheet but not enumerated since estimates would not have been quantitative.

-Chesapeake Bay Program Laboratory Method Code MI103

Protocol for the enumeration of whole water collected microzooplankton samples. Samples are decanted from the replicate carboys of water collected at five discrete depths above the pycnocline. The whole water microzooplankton samples are preserved with acid Lugol's solution to a final concentration of 2 %. In the lab, 5-25 ml are subsampled from the sample jar for settling. This amount depends on how much detritus and plankton were in the sample. If 25 ml was used, the bottle was shaken gently (slowly inverted 5 times) and 25 ml poured into a graduated cylinder. This was put into a 50 ml settling chamber and the graduated cylinder rinsed 3X. The sample was allowed to settle 48 h before being counted. If less than 25 ml aliquots were used, these were poured into 25 ml settling chambers which settle for 24 hr before counting. To count, the entire chamber was examined at 200X with an inverted microscope to obtain a minimum count of 100 organisms. If 100 organisms were not counted, another subsample is settled. Any organism that was abundant in the first aliquot (more than 60) was not counted. The count program used for the net samples (see above) was currently being adapted for use with whole water counts. The ITIS taxonomic codes were used for the taxa that are enumerated. Biomass estimates for each taxon were applied to the normalized densities in order to fit into various ecosystem models and the zooplankton index of biotic integrity.

Virginia Enumeration protocol from 1993-2009

-Chesapeake Bay Program Laboratory Method Code MI102

Samples are decanted from the replicate carboys of water collected at five discrete depths above the pycnocline. Each 1-liter sample was allowed to settle for 72 hours and carefully siphoned down to a 300 ml concentrated sample, which were then combined. A two-step settling and siphoning steps followed to produce first a 250 ml concentrate, which was next concentrated to 100 ml. This concentrate was sieved through 73 micron mesh net to trap microzooplankton >73 microns which were washed into a beaker, then placed into a settling chamber #1 for examination and counts. The filtrate was mixed and 3- 5ml aliquots were removed and placed in settling chamber #2, with a buffered formalin solution (20%) added to bring the total volume to 25 ml. After 5 minutes of settling, 15 ml of the upper concentrate was removed and placed in settling chambers were allowed to settle for 24 hours, and then counts were made. The entire bottom surface of the settling chambers was scanned at 100x for chamber #1 and at 200x for chamber #2 and #3 using an inverted plankton microscope. Chamber #1 provided counts for the larger microzooplankton (>73 microns), Chamber #2 for Microns. Counts were reported as number of organisms per liter. In theory, Virginia's MI102 organism counts for chambers #1 and #2 should reflect the same taxa and life stages found in the Maryland MI101 organism counts.

The 2012 Users Guide to CBP Biological Monitoring Data

OTHER ISSUES:

- Mesozooplankton counts are reported in organisms per cubic meters. Microzooplankton counts are reported in organisms per liter. One of the data sets must have its units converted before combining the data sets The conversion is for converting mesozooplankton into microzooplankton units is: DEN_M3 / 1000 = DEN_L
- 2) Maryland Microzooplankton SAMPLE_NUMBER: Note that the Maryland microzooplankton SAMPLE_NUMBERs are sample identifiers; they are not synonymous with a replicate number. Please perform a count of SAMPLE_NUMBER by STATION, SAMPLE_DATE, LAYER and SOURCE to determine the number of replicate samples taken at a station.
- 3) Virginia Specific Issue-Analysis of the July-December 1999 data deliverables revealed abnormally high counts of Oligotrichs were found at numerous stations. It is unclear whether this increase was due to natural phenomena or some kind of taxonomist bias due to the introduction of new personnel.
- 4) Virginia Specific Issues-The 2002 split sample study revealed that the phytoplankton genus Ceratium was being mistaken as rotifers in routine and split sample counts. Phytoplankton samples with high Ceratium counts were identified and the corresponding microzooplankton samples were recounted and resubmitted from the time period between July 1999-December 2001. ODU taxonomists were also noted as finding high counts of Oligotrichs in split samples where Maryland personnel did not find these. No explanation for this finding has been determined to date.

OTHER DOCUMENTATION:

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Microzooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/micro/mdmidoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Microzooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/micro/vamidoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). The 1998 - 1999 Split Sample Study for Chesapeake Bay Program Phytoplankton, Microzooplankton and Mesozooplankton Monitoring Components.URL ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/SplitSmplReport-1988-1989.pdf
GENERAL INFORMATION: TITLE: Mesozooplankton Counts PARAMETER NAME (NEW): COUNTS UNITS OF MEASURE: Number per liter METHOD CODES: MZ101A, MZ101B. MZ101C, MZ102, MZ103

GENERAL INFORMATION:

After extensive examination of historic mesozooplankton monitoring data, and in consideration of the known methodological and data quality issues, the CBP is issuing the following data usage recommendation: Only mesozooplankton samples enumerated with Hensen-Stempel (HS) methodologies are recommended for use in quantitative analyses. These data have method codes MZ101A, MZ101B, MZ101C, and MZ103. Data quality issues have been identified for portions of the Virginia record. Virginia samples collected prior to 1993 and enumerated with method MZ102, as well as those samples collected between 1993 and 2000 and enumerated with method MZ102 or MZ102B, should only be used for qualitative purposes (Johnson 2007).Baywide sampling for mesozooplankton ended in September 2002 due to the termination of the CBP zooplankton monitoring program in October 2002.

Maryland Enumeration protocols from 1984-2009

-Chesapeake Bay Program Laboratory Method Code MZ101A, MZ101B, MZ101C Mesozooplankton were collected in the field, with stepped oblique bongo net tows at each station. Bongo nets were deployed 0.5 meters above the bottom and nets were raised in 1-4 meter increments (usually 0.5 to 1.5 minutes/step) depending on station depth with a minimum of 5 steps per station. In the laboratory, samples were enumerated using a standard sub-sampling technique with a Hensen-Stempel pipette (HS) (Harris et.al. 2000). A hierarchical counting technique was employed to obtain density estimates. This procedure consists of first counting at least 60 individuals of the most dominant forms (e.g. Acartia tonsa) in a small sub sample (usually 1 - 2 milliliters), followed by 5- and 10- milliliter sub samples from which all species that had counts less than 60 in the previous sub sample were counted. The basic technique was modified slightly three times over the 18 year history of the program. The standard HS count and a whole sample scan for macrozooplankton (amphipods, shrimp, fish eggs, fish larvae and juvenile fish, etc.) was performed on each sample between 1984 and 1989. The macrozooplankton sample scan was temporarily discontinued from 1990 to 1996 (MZ101B). In 1996 the macro-zooplankton scan was reinstated and large bodied mesozooplankton species occurring in small numbers in the initial count were enumerated in special 850-micron sieve counts were again reported (MZ101C). Note that after 1 January 1999 smaller species occurring in small numbers in the standard count but occurred predominantly in the special 850-micron sieve counts were reported only in the method MZ 101C count.

Virginia Enumeration protocols from 1984-2009

-Chesapeake Bay Program Analytical Method Code-MZ102, MZ102B

Field samples were collected by taking five minute double-oblique pattern bongo net tows from bottom to surface. From1985 to 1992, the bongo nets used for field sampling were not equipped with flow meters to accurately estimate the volume of water filtered through the nets during a tow. The volume of water filtered during a tow was estimated using the length of the tow and area of the net's opening. In 1993, a flow meter were mounted on the nets. From 1985 through 1997 a Controlled Variability Sampling (CVS) method (method MZ102) described by Alden et.al. 1982 was used for sample enumeration. The CVS technique used a connected series of five wet sieves (200, 300, 600, 850, and 2000 microns) and a mechanized shaking apparatus to separate and zooplankton were then counted by size fraction. Size classes in which the organisms were too numerous to count in their entirety were split with a Folsom plankton splitter until an appropriate sample size is reached for statistically valid counts of the dominant species. The chosen error level of 35% required that each species of interest be counted to achieve a

The 2012 Users Guide to CBP Biological Monitoring Data

range of between 20 and 42 individuals in any given split. Species observed to be subdominant in the final split are counted until they achieved the range for the 35% error level. Split sampling tests in early 1998 revealed that smaller zooplankton slipped through the last 200 micron sieve and CVS enumerated samples were consistently reported lower plankton densities than the HS enumerated samples (ICPRB, 2000). Furthermore, the sieving process broke off fragile plankton appendages making taxa identifications more difficult. From March 1998 to January 2000 a 75 micron sieve was added to the sieve stack in hopes of capturing the smaller plankton lost by the original CVS method (method MZ102B). This modification to the CVS method was found to be ineffective (ICPRB 2000) and abandoned in 2000.

-Chesapeake Bay Program Analytical Method MZ103

From February 2000 to October 2002, Field samples were collected by taking five minute double-oblique pattern bongo net tows from bottom to surface. Bongo nets were equipped with flow meters. Samples were enumerated using a HS method (Harris et.al. 2000). This procedure consisted of first counting at least 60 individuals of the most dominant forms (usually Acartia tonsa) in a small sub sample (usually 1 - 2 milliliters), followed by 5- and 10- milliliter sub samples from which all species that had counts less than 60 in the previous sub sample were counted. Macro zooplankton (amphipods, shrimp, etc.) were identified when observed in sub samples. In addition, all samples, after the standard hierarchical counting technique, were filtered through an 850-micrometer sieve. Mesozooplankton that were retained in the 850-micrometer sieve that were not previously identified in the sub samples and/or macro zooplankton were counted and identified.

METHOD	DESCRIPTION	USAGE	STATE/
CODE		PERIOD	LABOROTORY
MZ101A	Hensen-Stempel Count with macrozooplankton scan	July 1984 -	MD\VERSAR
		December 1998	
MZ101B	Hensen-Stempel Count without macrozooplankton scan	January 1999 -	MD\VERSAR
		December 2001	
MZ101C	Hensen-Stempel Count with macrozooplankton scan and special 850-	July 1996 -	MD\VERSAR
	micron sieve count	October 2002	
	*Note both MZ101B and MZ101C counts were reported from July		
	1996-December 2001		
MZ102	Controlled Variability Sampling Method, data collected without flow	July 1985 -	VA\ ODU
	meters on bongo nets to measure sample volume.	December 1992	
MZ102	Controlled Variability Sampling Method	January 1993-	VA\ ODU
		December 1997	
MZ102B	Controlled Variability Sampling Method with 75 mµ sieve modification	January 1998- April	VA\ ODU
		2000	
MZ103	Hensen-Stempel Count with macrozooplankton scan and special 850-	January 2000 -	VA\ ODU
	micron sieve count	October 2002	

Table 5. Composite list of mesozooplankton enumeration method used in the historic Chesapeake Bay zooplankton monitoring programs.

OTHER ISSUES:

 Copepod nauplii were counted in both the mesozooplankton and microzooplankton samples and are included in both data sets. The smaller mesh size (<44u) of the net used to collect microzooplankton samples in Maryland and the whole water sample collection method in Virginia are more efficient in retaining the smallest copepod nauplii. Therefore, the microzooplankton estimates of copepod nauplii density are considered by the principal investigators to be more accurate. Remove the copepod nauplii in the mesozooplankton files prior to merging the micro- and mesozooplankton files. Barnacle nauplii were reported in the Virginia mesozooplankton data from January 1985 through December 1992. After January 1993 barnacle nauplii were reported only in the microzooplankton data.

OTHER DOCUMENTATION:

Alden, R. W. III., Dahiya, R. C., & R. J. Young, Jr. (1982). A Method For The Enumeration Of Zooplankton Samples. Journal of Experimental Marine Biology & Ecology, 59, 185-209.

Harris, R, Wieber, P., Lenz, J., Shjoldal, H., & Huntley, M. (2000). ICES Zooplankton Methodology Manual. New York: Academic Press.

Interstate Commission on the Potomac River Basin. (2000). Split Sampling Study for the Maryland and Virginia Mesozooplankton Monitoring Programs. ICPRB Report 00-3 Final Report June 2000. ICPRB Report 00-3. 88 p.

Johnson, J M (2007). A Review of Historic Chesapeake Bay Program Zooplankton Data and Analysis of Recounted Archived Sample. Report prepared **by ICPRB** for the Chesapeake Bay Program Living Resources Data Analysis Workgroup, ICPRB REPORT 2007-2. URL: http://www.potomacriver.org/cms/publicationspdf/ICPRB07-02.pdf

<u>ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/An%20Analysis%20of%20Archived%20Virginia</u> <u>%20Zooplankton%20Data_v2.pdf</u>

USEPA Chesapeake Bay Program (2012, February 22). The 1998 - 1999 Split Sample Study for Chesapeake Bay Program Phytoplankton, Microzooplankton and Mesozooplankton Monitoring Components.URL ftp.chesapeakebay.net/Pub/Living_Resources/plank/qa/SplitSmplReport-1988-1989.pdf

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Mesozooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/meso/mdmzdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Microzooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/meso/vamzdoc.pdf

TITLE: Gelatinous Zooplankton PARAMETER NAME (NEW): COUNTS and BIOVOLUMES UNITS OF MEASURE: Number of Organisms per Meter Cubed or Milliliters per meter Cubed METHOD CODES: PP101, PP102

GENERAL INFORMATION:

Assessments of gelatinous zooplankton were made as a regular part of the mesozooplankton monitoring programs in Maryland from 1984-2002. There was a change in the reporting of gelatinous taxa in 1987. Overall Maryland measurements of gelatinous zooplankton are considered to be of acceptable quality for data analysis. Gelatinous zooplankton assessments were sporadically made in the corresponding Virginia program between 1996 and 2002. During a 2001 laboratory site visits to the Virginia lab revealed that gelatinous zooplankton were frequently being missed by field crews and being preserved with routine mesozooplankton samples. At best Virginia gelatinous zooplankton ended in September 2002 due to the termination of the CBP zooplankton monitoring program in October 2002.

Maryland Enumeration protocols from 1984-2009

-Chesapeake Bay Program Analytical Method JF101

Prior to July 1987, Cnidarians (true jellyfish, hydromedusae) and ctenophores (comb-jellies) were removed from the zooplankton samples in the field and their numbers and biovolume (settled volume) measured from the bongo net that was used to collect count samples. All gelatinous zooplankton were reported as count and volumes in the two classes- Ctenophores (All *Beroe*, and *Mnemiopsis* specimens were combined) and Cnidarians (All Hydrozoas, and true Jellyfish specimens were combined). All gelatinous zooplankton were removed from samples in the field after sample preservation, and their numbers and settled volumes were recorded from the net that was used as the count sample.

-Chesapeake Bay Program Analytical Method JF102

After July 1987, Cnidarians (true jellyfish, hydromedusae) and ctenophores (comb-jellies) were removed from the zooplankton samples in the field and their numbers and biovolume (settled volume) measured from the bongo net that was used to collect count samples. All gelatinous zooplankton were reported as count and volumes in the four classes -Beroe, Hydrozoans, *Mnemiopsis*, and true Jellyfish. All gelatinous zooplankton were removed from samples and sorted in the field after sample preservation, their numbers and settled volumes were recorded from the net that was used as the count sample.

Virginia Enumeration protocols from 1984-2009

-Chesapeake Bay Program Analytical Method Code JF103

In the event that gelatinous zooplanktons were visible in the nets, the total volume is determined for the mesoglea remained after straining from the normal plankton sample. Care was taken to ensure that no residual plankton remains clinging to either the strainer or to the mesoglea. Percent composition of gelatinous zooplankton groups (ctenophore, moon jelly, stinging nettle) was determined and recorded by count and biovolume on the field log. Mesoglea were then discarded.

OTHER ISSUES:

OTHER DOCUMENTATION:

Harris, R, Wieber, P., Lenz, J., Shjoldal, H., & Huntley, M. (2000). ICES Zooplankton Methodology Manual. New York: Academic Press.

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Mesozooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/meso/mdmzdoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Microzooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/plank/meso/vamzdoc.pdf

TITLE: Horizontal and Vertical Fluorescence PARAMETER NAME (NEW): CHL_F UNITS OF MEASURE: micrograms chlorophyll per liter METHOD CODES: 101, 102,103, 104,105,106,107,108,109,110

GENERAL INFORMATION:

After a series of quality assurance inquiries it has been determined that the horizontal and vertical fluorescence monitoring data has a variety of quality issues that users need to be aware of. Data quality issues include positional accuracy of horizontal fluorescence data collected prior to 2000 and calibration issues in the Maryland data associated with the regression curves used to covert fluorescence voltages to chlorophyll *a* values.

Sampling Site Position Determination Issues

The Maryland horizontal fluorescence data collected by Morgan State University between 1984 and April 1999 (excluding the special Potomac survey) and all Virginia horizontal fluorescence collected by Old Dominion University between 1991 and 1997 had station latitudes and longitudes estimated through an interpolation process. The latitudes and longitudes are at best approximations of actual positions in the field. Inaccuracies in the estimated station locations may be problematic in mapping or ground truthing applications.

For purposes of determining the actual geographical location of a reading, sampling station location along transects was determined using the simple geometry of right triangles to compute latitude and longitude. Calculations were based on the following assumptions: a) the transect was over a straight line from departure station to arrival station, b) boat speed was assumed to be constant, c) the Latitudes and Longitudes of end point stations were fixed points. Equations were based on the relationship of total strip recorder tape length being proportional to actual distance between stations. Sampling position was based on the distance from the starting position of the strip recorder tape of the at-sample time against the total length of the tape at the destination station.

Also note that all horizontal and vertical fluorescence with direct position reporting by LORAN-C collected in Virginia from 1991-1995 and Maryland from 1984-1999 does not meet current EPA sampling position policy. The current EPA sampling position policy requires that position be measured with a Global Positioning System (GPS). However locations determined with Loran-C and should be less problematic in mapping or ground truthing applications and reasonable approximations of actual location.

Fluorescence Value Calculation Issues

As part of a remote sensing ground truthing exercise in 1998, comparison of interpolated Maryland horizontal fluorescence and water quality surface chlorophyll *a* data was made. Comparisons revealed that the existing fluorescence chlorophyll *a* values were "orders of magnitude lower than corresponding water quality values". These differences were not present in the corresponding Virginia data. While *in-situ* fluorescence values are generally accepted to be depressed measurements of chlorophyll, the magnitude of the differences warranted further investigation.

A comparison both the Maryland and Virginia sampling protocols revealed two significant issues affecting data values. Although both programs used periodic grab samples to create a regression to convert instrument voltage to chlorophyll *a* values, the regressions were calculated differently. Both Virginia laboratories were doing daily regression curves wile Maryland computed a single curve based on all 3 days of a sampling cruise. Additionally the Maryland laboratory analysis method for grab chlorophyll samples was determined to be significantly different from the standard CBP water quality chlorophyll

The 2012 Users Guide to CBP Biological Monitoring Data

protocol. Several changes were made to the Maryland program to remedy these issues. All fluorescence data collected by both states after 1998 was reported with its corresponding instrument voltages, to allow recalculation od daily fluorescence curves from alterative grab chlorophyll data. Maryland switched to computing daily regressions for fluorescence and adopted the standard CBP water quality method for analysis of grab chlorophyll samples in 2000.

OTHER ISSUES:

Please see individual project documentation for cruise notes for specifics on missing data and changes to standard regression calculation protocol for specific dates

OTHER DOCUMENTATION:

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Fluorescence Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/fluor/mdfldoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Microzooplankton Monitoring Survey Data Dictionary. URL ftp://ftp.chesapeakebay.net/Pub/Living_Resources/fluor/vafldoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Meeting Minutes from the Analytical Methods and Quality Assurance Workgroup 9 September 1999. URL http://ftp.chesapeakebay.net/Pub/Living_Resources/fluor/AMQAW_99_09_09.PDF

TITLE: Tidal Benthic Macro Invertebrate Monitoring Sampling Design and Station Positions PARAMETER NAME (NEW): LATITUDE, LONGITUDE UNITS OF MEASURE: Decimal Degrees METHOD CODES: NA

GENERAL INFORMATION:

The sampling designs of the Maryland and Virginia surveys have changed over time to accommodate changes in the objectives for these programs. In the current monitoring programs, two types of sites are sampled: (1) fixed sites to identify temporal trends in invertebrate community status and habitat health and (2) spatially random sites are sampled to assess bay-wide benthic macroinvertebrate community status. Although, the site selection criteria for random site stations have changed, the actual methods of sample collection and analysis have not changed significantly.

Fixed Site Element

A fixed sampling site is defined by geography (within a 1 km radius from a fixed location) and by specific habitat (depth and bottom sediment type) criteria. Samples were collected within the 1 kilometer radius of a fixed location.

Maryland

- July 1984- June 1988. Samples were collected from seventy fixed sites, on eight to ten occasions annually. Numbers ranging from 001 to 080 identifies the fixed stations. During each sampling event three samples were taken at each site, with varying types of gear.
- July 1989-June 1994. Fixed site sampling continued at 27 sites located within the small strata random sampling areas. Each area was visited on four to six sampling cruises annually and single benthic samples were collected from the fixed sites in each small area with varying types of gear.
- July 1994-Present. Samples were collected from 27 fixed sites. Twenty-three of these fixed sites have been sampled from beginning of program in 1984; they were among the 70 original fixed sites sampled from 1884-1989. Two of the other four were additional sites were added in 1989 and the last two were added in 1995. Three samples are collected at each site during a sampling trip with varying types of gear.

Virginia

• March 1985-Present. Samples collected from twenty-six fixed sites quarterly from 1985-1995, after which sampling was conducted twice annually using a box core grab.

Probability-based sampling

A probability based sampling component was added to the tidal benthic macroinvertebrate monitoring program with intended to estimate the area of the Bay's mainstem and tidal tributaries that met the Chesapeake Bay Program Community Restoration Goals (Ranasinghe et. a. 1994). This sampling program had two phases the Small Area/Strata sampling phase and the Large Area/Strata sampling phase. Samples were taken using van veen grab. In each phase, Stations were randomly selected from each stratum as follows:

1) Random stations were selected by overlay grids on navigational charts

2) Each stratum was mapped and numbers assigned to all grid locations falling within the stratum.

3) Sampling locations are chosen for each stratum at random by a computer generated random number. If a selected grid could not be sampled, another grid was randomly selected until the number of samples per strata desired was reached.

Maryland

- July 1984-June 1988. No random sampling was conducted.
- July 1989-June 1994. A small area random strata sampling element was added around 27 existing fixed site. Additionally four new strata were added in regions where sampling was previously absent, but were targeted for resource management activity. Samples were collected at random from approximately 25 kilometer² area surrounding fixed sites to assess the representatives-ness of the fixed locations. Stratum boundaries were determined by environmental factors, which impact benthic community compositions in the bay including salinity, sediment type, and bottom depth. Each area was visited on four to six sampling cruises annually and single benthic samples were collected from the fixed and three random sties in each small area.
- July 1994-June 1995. The habitat strata were redefined in 1994 using EMAP criteria to "piggyback" on EMAP sampling results. Three sampling strata were defined, the mainstem (including Tangier and Pocomoke Sounds, the Potomac River and remaining tributaries. Twenty-seven samples were allocated to the mainstem, twenty-eight to the Potomac River and eleven to the other tributaries in Maryland.
- July 1995-Present. The habitat strata were redefined again in 1995 to better suit the state of Maryland information needs. Six strata were defined, the Potomac River, the Patuxnet River, the upper Maryland Bay (all Chesapeake Bay Mainstem above/north the Bay Bridge), the Lower Maryland Bay (all Chesapeake Bay Mainstem below/South of the Bay Bridge), the Eastern Tributaries (all tributaries to Chesapeake Bay on the Eastern shore), and the Western Tributaries (all tributaries to Chesapeake Bay on the Western shore, excluding the Potomac and Patuxnet Rivers). Twenty-five samples were allotted to each stratum. Regions on the Maryland Main stem deeper that 12 meters are excluded from sampling because the area has been consistently found to be azoic.

Virginia

- January 1985-December 1995. No random sampling was conducted.
- January 1996-Present. A probability-based sampling component was added in coordination with the random strata-sampling program in Maryland waters. Twenty-five stations were randomly selected in each of five strata, the Elizabeth, the James River, the York River, the Rappahannock River and the mainstem of Chesapeake Bay. In each stratum five additional sites were randomly selected as potential replacement sites for any station rejected in the field due to an inability to sample the site (e.g. an oyster reef, or inter-tidal site). Random stations were sampled between July 15 and September 31 of each year.

OTHER ISSUES:

Loran C Station Position Errors

All station positions in the Maryland portion of the data are based on actual sampling site location at time of sampling as determined by Loran C (prior to 1995) or GPS. Virginia fixed sites are reported as a standard station location and random sites are reported by their GPS determined position at sampling time. Loran C was subject to substantial positioning errors in regions of the Chesapeake Bay in areas close to radio transmission towers, military installations and intermittent system outages. Currently 173 sampling events (3% of all sampling event) in Maryland between 1984-1994 have been determined to have erroneous Loran station locations. Contact the CBP Living Resources Data Manager for further details.

OTHER DOCUMENTATION:

Ranasinghe, J. A., S. B. Weisberg, D. M. Dauer, L. C. Schaffner, R. J. Diaz, and J. B. Frithsen. 1994. <u>Chesapeake Bay Benthic Community Restoration Goals</u>. Prepared for the U.S. EPA Chesapeake Bay Program Office, the Governor's Council on Chesapeake Bay Research Fund, and the Maryland Department of Natural Resources by Versar, Inc., Columbia, MD.

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Benthic Monitoring Survey Data Dictionary. URL http://ftp.chesapeakebay.net/Pub/Living_Resources/benth/mdbedoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Benthic Monitoring Survey Data Dictionary. URL http://ftp.chesapeakebay.net/Pub/Living_Resources/benth/vabedoc.pdf .

TITLE: Tidal Benthic Macroinvertebrate Biomass- Maryland Data Only PARAMETER NAME (NEW): AFDW, UNITS OF MEASURE: GRAMS/SAMPLE METHOD CODES: BM201, BM202. BM203, BM204

GENERAL INFORMATION:

The Chesapeake Bay Programs tidal benthic macroinvertebrate monitoring programs routinely perform measurement of benthic biomass. Unlike many programs the biomass determinations are made on a species specific basis. The Maryland portion of the program has used three different methods for assessing biomass over the history of the program.

Versar Enumeration protocols from 1984-Present

-Chesapeake Bay Program Analytical Method BM201 For data collected in 1984, actual biomass determinations were made by the groupings of mollusks, crustacean, worm and miscellaneous organisms. Actual determination of ash free dry weight by group was done by drying samples at 60 degrees C to a constant weight, ashing in a muffle furnace, and weighed.

-Chesapeake Bay Program Analytical Method BM202

For the period from 1985 to 1994, organisms were grouped into major taxonomic categories. Species specific biomasses were determined for 22 selected species. The 22 selected species have traditionally made up 90 % of all benthic biomass. All specimens were photographed and morphometric measurements of a species were made on photographic negative with a digital planimeter. The species specific morphometric measurements were subsequently entered into a nonlinear regression to obtain estimated values of ash free dry weight for each species. Nonlinear regressions between the body measurements and actual ash free dry weight were developed from the 1985-1986 data field data. For the years 1985-1994 the species selected for biomass estimation were:

ACTEOCINA CANALICULATA	
CARINOMA TREMAPHOROS	
CORBICULA FLUMINEA	
CYATHURA POLITA	
GAMMARUS SP.	
GEMMA GEMMA	
GLYCINDE SOLITARIA	
HAMINOEA SOLITARIA	
HETEROMASTUS FILIFORMIS	
HYPERETEONE HETEROPODA	
LEPTOCHEIRUS PLUMULOSUS	

MACOMA BALTICA MACOMA MITCHELLI MARENZELLERIA VIRIDIS MICRURA LEIDYI MULINIA LATERALIS MYA ARENARIA NEANTHES SUCCINEA PARAPRIONOSPIO PINNATA RANGIA CUNEATA STREBLOSPIO BENEDICTI TAGELUS PLEBEIUS

-Chesapeake Bay Program Analytical Method BM204

Since 1994 to present, ash-free dry weight biomass (grams/sample) is measured directly for each species (with the exceptions listed below) by drying the organisms to a constant weight at 60 C and ashing in a muffle furnace at 500 C for four hours and re-weighing (ash weight). The difference between dry weight and ash weight is the ash free weight. Because oligochaetes and chironomids require slide mounting for identification, species-specific biomass for Oligochaeta and Chironomidae is not provided except for Tubificoides spp., Branchiura sowerbyi, and Coelotanypus spp., which do not require slide mounting for identification. Bivalves are crushed to open the shells and expose the animal to drying and ashing (shells included).

OTHER ISSUES:

Note-Chesapeake Bay Program Analytical Method BM203 and BM204 were later determined to be equivalent. BM203 refers to the Virginia benthic biomass assessment protocol.

OTHER DOCUMENTATION:

USEPA Chesapeake Bay Program (2012, February 22). Maryland Chesapeake Bay Program Benthic Monitoring Survey Data Dictionary. URL http://ftp:chesapeakebay.net/Pub/Living_Resources/benth/mdbedoc.pdf

USEPA Chesapeake Bay Program (2012, February 22). Virginia Chesapeake Bay Program Benthic Monitoring Survey Data Dictionary. URL http://ftp.chesapeakebay.net/Pub/Living_Resources/benth/vabedoc.pdf .

TITLE: Non-Tidal Benthic Macroinvertebrate Taxa Counts PARAMETER NAME (NEW): COUNTS UNITS OF MEASURE: Number Per Sample METHOD CODES: See Below

GENERAL INFORMATION:

The non-tidal stream macroinvertebrate data set is a recent acquisition at the CBPO Data Center. Data in this set is generated by numerous federal, state, local agencies and academic institutions. All collect data using some modification of the EPA Rapid Bioassessment protocol (Barbour et. al. 1999). The modifications include use of different sampling gear, sampling of different types of habitats, different subsample count and enumeration of taxonomy to varying levels. While there are documented ways to "work around" the effects of the varying levels of taxonomic level identifications and subsample count biases (Astin 2006, Astin 2007), the effects of field collection differences and other data quality biases have not been fully assessed at this time.

BIO_		SUBSAMPLE	HABITAT	TAXON	GEAR
RE101A	PADER Panid Rio Assessment Protocol	200	Difflo	Eamily	D Framo Not
DLIUIA	PADEP Rapid Bio-Assessment Protocol	200	Rine	Ганну	D-Hame Net
BE101B	With Replication	200	Riffle	Family	D-Frame Net
	The NYSDEC Stream Biomonitoring-				
BE102	Kick Sample Protocol	100	Riffle	Genus & Species	Kick Net
DE100	Maryland Biological Stream Survey	100		Family	
BE103	Bioassessment Protocol Manuand Care Trand	100	Multi	& Genus	D-Frame Net
BE10/	Rigassessment Protocol	All Organisms	Other	Family	Multiplate Sample
DLT04	Maryland Core Trend	All Organisms	Outer	T diffiny	
BE104	Bioassessment Protocol	Counted	Other	Family	Surber Sampler
	VADEQ Rapid Bio-Assessment Protocol:			,	
BE105	Single-Habitat Method	110	Riffle	Family	D-Frame Net
554650	VADEQ Rapid Bio-Assessment Protocol:		5100		
BE105G	Single-Habitat Method	110	Riffle	Genus	D-Frame Net
BE106	VADEQ Rapid Bio-Assessment Protocol: Multi, Habitat Motbod	110	N <i>A</i> ulti	Family	D Framo Not
DL100	VADEO Rapid Bio-Assessment Protocol	110	Multi	T anniy	
BE106G	Multi- Habitat Method	110	Multi	Genus	D-Frame Net
BE107	WVDEP Modified EPA RBP II, Single Habitat	100	Riffle	Genus	Rectangular Dip Net
BE107	WVDEP Modified EPA RBP II, Single Habitat	100	Riffle	Genus	Hand Pick
BE107	WVDEP Modified EPA RBP II, Single Habitat	100	Riffle	Genus	D-Frame Net
	WVDEP Modified EPA RBP II,				
BE107B	Single Habitat-200 COUNT	200	Riffle	Genus	D-Frame Net
BE107B	WVDEP MODFIED EPA RBP II, Single Habitat 200 COUNT	200	Difflo	Conus	Rectangular Din Not
BE107B	Mid-Atlantic Coastal Streams Method	100	Multi	Genus	Dip Net
BE100	WVDEP_EPA_RBP1L_Multi_Habitat	100	Multi	Genus & Species	D-Frame Net
DETOY		100	Matti	Ochus & Species	Surber
BE110	SRBC Rapid Bioassessment Protocol (RBP) III	200	Riffle	Genus	Sampler
BE110	SRBC Rapid Bioassessment Protocol (RBP) III	200	Riffle	Genus	D-Frame Net
BE110	SRBC Rapid Bioassessment Protocol (RBP) III	200	Riffle	Genus	Kick Net
BF111	Montagenery County-unspecified protocol	100	Multi	Genus	Surber
	Mentgemeny County-unspecified and	100	NA. JH	Carrie	
BEILL	Montgomery County-unspecified protocol	100	Multi	Genus	D-Frame Net

BIO_		SUBSAMPLE	HABITAT	TAXON	GEAR
METHOD	BIO_METHOD_TITLE	COUNT	TYPE	LEVEL	DESCRIPTION
	Fairfax county-RBP for Coastal Plain				
BE113	physiographic provinces	200	Multi	Family	Kick Net
					Rectangular
BE114	ICPRB Protocol-quantitative	200	Multi	Family	Dip Net
BE116	EPA Wadeable Streams Assessment Protocol	500	Multi	Genus	D-Frame Net
BE117	District Of Columbia-Contractor Protocol	100	Unspecified	Genus & Species	D-Frame Net
BE118	Prince Georges County-unspecified	100	Multi	Genus	D-Frame Net
BE119	USFS Sampling Protocol	200	Riffle	Family	Kick Seine
BE120	The NYSDEC Stream Biomonitoring-	100	Multi	Genus & Species	Kick Not
DL120		100	watt		
BE121	LOUDEN COUNTY Single Habitat	100	Riffle	Family	D-Frame Net
BE122	DISTRICT OF COLUMBIA-In-house Protocol	100	Unspecified	Family	D-Frame Net
BE123	Virginia Commonwealth University Sampling Protocol	200	Multi	Genus & Species	D-Frame Net
BE1240	EPA EMAP-Unspecified Sampling Protocol	300	Other	Genus & Species	D-Frame Net
BE124P	EPA EMAP-POOL Sampling Protocol	300	Pool	Genus & Species	D-Frame Net
BE124R	EPA EMAP-RIFFLE Sampling Protocol	300	Riffle	Genus & Species	D-Frame Net
BE125A	USGS-RTH-NOSNAG Sampling Protocol	500	Multi	Genus & Species	D-Frame Net
BE125B	USGS-RTH-SNAG Sampling Protocol	500	Multi	Genus & Species	D-Frame Net

The 2012 Users Guide to CBP Biological Monitoring Data

Table 6. Comparison of Non-Tidal Macroinvertebrate Enumeration Methods

OTHER ISSUES:

OTHER DOCUMENTATION:

Astin, L. E. 2007. Developing biological indicators from diverse data: The Potomac Basin-wide Index of Benthic Integrity (B-IBI). Ecological Indicators, 7: 895-908.

Astin, L.E. 2006. Data synthesis and bioindicator development for nontidal streams in the interstate Potomac River basin, USA. Ecological Indicators, 6: 664-685.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. PA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. Available online at: <u>http://www.epa.gov/owow/monitoring/rbp/download.htm</u>

Remember: Please Read the Data Documentation Files!

ECOSYSTEM INDICATORS

Teams of Chesapeake Bay Program scientists and natural resource managers have worked to develop indicators of Chesapeake Bay ecosystem health. These indicators are calculated from a broad range of monitoring data and provide an indication of status of the Bay ecosystem. The technical indicators are used primarily in the interpretation, synthesis and communication of monitoring results. The biological indicators are expected to provide quantitative information on food chain responses to nutrient and sediment load reductions in the Chesapeake Bay. Indicators are also potentially useful in ongoing efforts to develop biocriteria and restoration targets for state waters. There are a number of technical indicators for various trophic groups currently under development or in peer review. Currently the Bay Program uses ten biological indicators (5 fisheries and 5 lower trophic level) to characterize bay and watershed health. The summaries below provide an overview of indicators currently used to report on the status ecosystem health based on data managed at the data center: macroinvertebrates and phytoplankton in tidal waters and macroinvertebrates in non-tidal waters. There was an additional Zooplankton community indicators developed in 2006 but is not described here because CBP zooplankton monitoring programs have been discontinued (Carpenter et al 2006).

THE BENTHIC INDEX OF BIOTIC INTEGRITY

The Chesapeake Bay Benthic Index of Biotic Integrity (BIBI) initially released in 1997 (Weisberg et al. 1997) was meant to be a tool for assessing the status of benthic macroinvertebrate communities in tidal waters. In subsequent years, a series of statistical and simulation studies were conducted to evaluate and optimize the B-IBI (Alden et al. 2002). The results of Alden et al. (2002) indicated that the B-IBI is sensitive, stable, robust, and statistically sound. New sets of metric and threshold combinations for the tidal freshwater and oligohaline habitats were also developed in Alden et al. (2002) with a larger dataset than was available to Weisberg et al. (1997) for these two habitats. Since its introduction, the index has been used in a variety of restoration and habitat targeting efforts (Dalal et al. 1999). It has been incorporated into the Chesapeake Bay Health Index developed by Williams et al. 2009. The BIBI makes a good integrator of long-term environmental conditions because benthic organisms have limited mobility and their responses to stress are well documented. The current indices are both habitat and seasonally dependent. Therefore, data must be selected for time of the year and preclassified for habitat conditions.

The Chesapeake Bay B-IBI is calculated by scoring each of several attributes of benthic macroinvertebrate community structure and function (abundance, biomass, diversity, etc.) according to thresholds derived from reference communities. The unweighted scores (on a 1 to 5 scale) are then averaged across attributes to calculate an index value. Samples with index values of 3.0 or more are considered to have good benthic condition indicative of good habitat quality. The current summary statistics are as follows:

Shannon-Weiner Species Diversity Index Total Species Abundance Total Species Biomass Percent Abundance of Pollution-Indicative Species Percent Abundance of Pollution-Sensitive Species Percent Biomass of Pollution-Indicative Species Percent Biomass of Pollution-Sensitive Species Percent Abundance of Carnivores and Omnivores Percent Abundance of Deep Deposit Feeders Tolerance Score Tanypodinae to Chironomidae percent abundance ratio Two additional metrics are used only at fixed stations by the Virginia Benthic Monitoring Program:

Percent biomass of organisms found >5cm below the sediment-water interface Percent number of taxa found >5cm below the sediment-water interface

The B-IBI is both habitat and season dependent. Therefore data must be selected for time of year and classified according to the habitat type from which the samples were collected. Habitats are defined by salinity and sediment type. The application of the B-IBI is limited to samples collected in summer, defined as July 15 through September 30.

Habitat Class	Bottom Salinity (psu)	Silt-clay (<62 µ) content by Weight (%)
Tidal freshwater (TF)	0-0.5	N/A
Oligohaline (OH)	≥0.5-5	N/A
Low mesohaline (LM)	≥5-12	N/A
High mesohaline (HM) sand	≥12-18	0-40
High mesohaline (HM) mud	≥12-18	>40
Polyhaline (PO) sand	≥18	0-40
Polyhaline (PO) mud	≥18	>40

Table 7. Tidal Benthic Habitat Classifications

Next selected summary statistics are scored on a ranking of 1, 3 or 5. Least-disturbed sites receive a 5; slightly degraded sites are ranked a 3, while severely degraded sites receive a score of 1. Lastly, the summary statistics are combined into a single Restoration Goal Index (RGI) value for the benthic community at each site by averaging the scored index metrics. The Chesapeake Bay Benthic Monitoring Program classifies benthic community condition into four levels: "meets goals", "marginally degraded", "degraded", and "severely degraded". B-IBI values of 3.0 are the breakpoint between non-degraded and marginal or degraded conditions.

B-IBI	Benthic Community Condition
≥3.0	Meets restoration goals
2.7-2.9	Marginal
2.1-2.6	Degraded
≤2.0	Severely degraded

Table 8. B-IBI ranges and Benthic Community Condition

For full details on calculation protocol for the tidal benthic index of biotic integrity please see the document <u>Methods for calculating Benthic Index of Biotic Integrity</u> at the following locations

http://www.baybenthos.versar.com/docs/ChesBayBIBI.PDF

ftp.chesapeakebay.net/Pub/Living_Resources/benth/ChesBayBIBI.pdf

http://sci.odu.edu/chesapeakebay/reports/benthic/BIBIcalc.pdf

THE PHYTOPLANKTON INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS

Phytoplankton (free-floating, microscopic algae) form the base of the estuarine food web and are stringly influenced by nutrient and light conditions in the water column. Planktonic organisms have long been used to assess pelagic environmental conditions (Stevenson & Pan, 1999). Plankton indicators have frequently been used in composite indexes of ecosystem health (Jordan & Vaas, 2000). Metrics calculated from the long term monitoring data have been developed to characterize "reference communities," or populations of phytoplankton living in least-degraded water quality conditions (Alden et. al. 1997, USEPA 2003, Marshall et. al 2006). Attributes of the reference communities described in Buchanan et al. 2005 were used to create a Phytoplankton Index of Biotic Integrity (PIBI), or quantitative scale for assessing phytoplankton community status relative to water quality (Lacouture et al. 2006). The Chesapeake Bay PIBI is a tool for assessing the condition of the thidal phytoplankton communities in the bay. It has been incorporated into the Chesapeake Bay Health Index developed by Williams et al. 2009.

As part of the development of Chesapeake Bay Phytoplankton reference communities (Buchanan etal 2005) and a Phytoplankton Index of Biotic Integrity (PIBI) (Lacouture etal 2006) a series of summary phytoplankton parameters were calculated for all monitoring events. While the majority of these calculated values are not scored metrics in the PIBI, many users of monitoring data have found summary data to be more useful than "raw" taxa counts. Therefore the complete suite of these composite metrics is being made available as the Phytoplankton Indicator dataset as well as the scored PIBI metric data set. All values in this data set are above and below pycnocline layer-averaged values. See Appendix A for details. The current list of available summary phytoplankton based parameters in the indicator dataset is as follows:

CHLOROPHYTE ABUNDANCE CHLOROPHYTE BIOMASS CHRYSOPHYTE ABUNDANCE CHRYSOPHYTE BIOMASS COCHLODINIUM HETEROLOBATUM ABUNDANCE COCHLODINIUM HETEROLOBATUM BIOMASS CRYPTOPHYTE ABUNDANCE **CRYPTOPHYTE BIOMASS** CYANOPHYTE ABUNDANCE CYANOPHYTE BIOMASS DIATOM ABUNDANCE DIATOM BIOMASS DINOFLAGGELATE ABUNDANCE DINOFLAGGELATE BIOMASS EUGLENOPHYTE ABUNDANCE EUGLENOPHYTE BIOMASS HAPTOPHYTE ABUNDANCE HAPTOPHYTE BIOMASS

MICROCYSTIS AERUGINOSA ABUNDANCE MICROCYSTIS AERUGINOSA BIOMASS PICOPLANKTON ABUNDANCE **PICOPLANKTON BIOMASS** PRASINOPHYTE ABUNDANCE PRASINOPHYTE BIOMASS PROROCENTRUM MINIMUM ABUNDANCE PROROCENTRUM MINIMUM BIOMASS TOTAL PHYTOPLANKTON ABUNDANCE TOT PHYTOPLANKTON BIOMASS **BIOMASS TO CHLOPHYLL RATIO** AVERAGE CELL SIZE PERCENT CRYPTOPHYTE BIOMASS PERCENT CYANOPHYTE BIOMASS PERCENT DIATOM BIOMASS PERCENT DINOFLAGGELATE BIOMASS

There are also a number of relevant water quality parameters which have been extracted from the Chesapeake Bay Program Water Quality Database. These parameters then had average layer values computed and were merged into the composite metric data set. These parameters include:

SALINITY SURFACE CHLOROPHYLL INORGANIC PHOSPHATE CHLOROPHYLL a SECCII DEPTH DISOLVED INORGANIC NITROGEN TOTAL SUSPENDED SOLIDS DISSOLVED OXYGEN DISSOLVED ORGAINIC CARBON PARTICULATE CARBON PHAEOPHYTEN TOTAL ORGANIC CARBON WATER TEMPERATURE The Chesapeake Bay P-IBI is calculated by scoring each of several attributes of phytoplankton community structure and function (abundance, biomass, present/absence of HAB's etc.) according to thresholds established from data distributions. Currently twelve metrics are used to calculate the PIBI:

Phytoplankton Total Biomass to Chlorophyll Ratio Surface Chlorophyll Percent Cryptophytes Biomass Cyanophyte Biomass Diatom Biomass Dinoflagellate Biomass Dissolved Organic Carbon *Microcystis aeruginosa* Abundance Pheophyten Picoplankton Abundance *Prorocentrum minimum* Abundance Total Phytoplankton Biomass

A PIBI score is calculated for each station-date sampling event in the index period, which is currently spring (March-May) and summer (July-September). A Salinity zone was assigned to each datum according to the layer's mean salinity using a standard Venice System: tidal fresh (F) (0.0 - 0.5 PSU), oligohaline (O) (>0.5 - 5.0 PSU), mesohaline (M) (>5.0 - 18.0 PSU), and polyhaline (P) (>18.0 PSU). Multiple parameters (metrics) in the databases are individually scored and then averaged. PIBI scores range from 1.0 (very degraded communities) to 5.0 (desirable, least-impaired communities). Analysis results are typically presented as: a) a median or average PIBI score, or b) the frequency of PIBI scores in a given rank. PIBI ranks are as follows:

	Phytoplankton
P-IBI	Community Condition
>4.0	Good
3.33-4.0	Fair-Good
2.67-3.32	Fair
2.0-2.66	Fair-Poor
<2.0	Poor

Table 9. P-IBI Ranges and Phytoplankton Community Condition

For full details on calculation protocol for all calculated metrics and scoring of the tidal Phytoplankton index of biotic integrity please see Lacouture et. a;. 2006 or the document <u>Methodology Applied in the</u> <u>Calculation of Chesapeake Bay Program Phytoplankton Composite Metrics and Index</u> <u>of Biotic Integrity (PIBI) at the following locations</u>

ftp.chesapeakebay.net/Pub/Living Resources/plank/pibi_DOC.pdf

BASIN-WIDE BENTHIC INDEX OF BIOTIC INTEGRITY AND CALCULATED METRICS

Healthy freshwater streams and rivers have local and regional importance. Clean waterways are a benefit to residents who use them for drinking water, recreational activities, waste dilution and other purposes. The watershed's streams, creeks and rivers also eventually flow into the Chesapeake Bay, so their water quality has a direct impact on the health of the estuary. An effective way to measure the health of freshwater streams and rivers is to study the oraganisms that live in these waters. The abundance and diversity of snails, mussels, insects and other bottom-dwelling organisms - known as benthic macroinvertebrates - are good indicators of the health of streams because these creatures can't move very far and they respond in certain predictable ways to pollution and environmental stresses. The Chesapeake Bay basin-wide Benthic Index of Biological Integrity, or "Chessie B-IBI," was designed to evaluate macroinvertebrate community health in non-tidal streams and wadeable rivers in a uniform manner across state boundaries and in the context of the entire Chesapeake Bay basin.

As part of the development of Chessie BIBI raw data from over 25 stream monitoring programs were incorporated into a common database structure and a series of family-level macroinvertebrate metrics calculated from the data. Differences in monitoring program sampling and enumeration methodologies can strongly influence analysis done on raw data; however the differences may not greatly influence assessments when the monitoring programs have a common basis such as the US EPA RBP methods (Astin 2006), family-level metrics are employed, and the metrics are unit-less (percent) or standardized (100-count subsample). A suite of family-level metrics were calculated and tested as part of the Chessie BIBI development process. While the majority of these calculated values were not used in the Chessie BIBI, many users of monitoring data have found the variety of metrics available to be useful. Therefore the complete suite of these metrics is being made available as well as the scored Chessie BIBI metric data set. See Appendix A for details. The current list of available macroinvertebrate metrics are listed below. The "R_" suffix indicates the metric value is derived from a sample that has been randomly standardized to a 100-count subsample.

ASPT MOD ASPT_MOD_R BECK BECK R DIPTERA_TAXA_CNT DIPTERA_TAXA_CNT_R EPHEMEROPTERA TAXA CNT EPHEMEROPTERA_TAXA_CNT_R EPT TAXA ABUND EPT_TAXA_ABUND_R EPT_TAXA_COUNT EPT_TAXA_COUNT_NO_TOL EPT TAXA COUNT NO TOL R EPT_TAXA_COUNT_R FBI FBI R GOLD GOLD R GRAND SCORE MARGALEFS MARGALEFS R NCO_TAXA_CNT NCO_TAXA_CNT_R NON_INSECT_TAXA_CNT NON INSECT TAXA CNT R PCT_BURROWER PCT_BURROWER_R PCT CHIRONOMIDAE PCT_CHIRONOMIDAE_R PCT_CLIMB PCT_CLIMB_R PCT_CLING

PCT_CLING_R PCT_CLINGER_TAXA PCT CLINGER TAXA R PCT_COLLECT PCT_COLLECT_R PCT DIPTERA PCT DIPTERA R PCT_DOM1 PCT DOM1 R PCT_DOM2 PCT DOM2 R PCT DOM3 PCT DOM3 R PCT_EPHEMEROPTERA PCT EPHEMEROPTERA R PCT_EPT PCT EPT R PCT_EPT_TAXA_RICH PCT_EPT_TAXA_RICH_R PCT_FILTERERS PCT FILTERERS R PCT_GATHER PCT_GATHER_R PCT_LIMESTONE PCT_LIMESTONE_R PCT_NET_CADDISFLY PCT_NET_CADDISFLY_R PCT_NON_INSECT PCT NON INSECT R PCT PLECOPTERA PCT_PLECOPTERA_R PCT_PREDATOR

PCT_PREDATOR_R PCT_SCRAPER PCT SCRAPER R PCT_SENSITIVE PCT_SENSITIVE_R PCT SHREDDER PCT SHREDDER R PCT SIMULIIDAE PCT SIMULIIDAE R PCT_SWIMMER PCT SWIMMER R PCT_TOLERANT PCT_TOLERANT_R PCT_TRICHOPTERA PCT TRICHOPTERA NO TOL PCT_TRICHOPTERA_NO_TOL_R PCT TRICHOPTERA R PLECOPTERA_TAXA_CNT PLECOPTERA_TAXA_CNT_R RATIO_SC_TO_CF RATIO_SC_TO_CF_R RATIO_SC_TO_SH RATIO_SC_TO_SH_R RATIO_SH_TO_CG RATIO_SH_TO_CG_R SCRAPER_TAXA_CNT SCRAPER_TAXA_CNT_R SENSITIVE_TAXA_COUNT SENSITIVE_TAXA_COUNT_R SIMPSON DIVERSITY SIMPSON_DIVERSITY_R SW

SW_R TAXA_RICH TAXA_RICH_R TOLERANT_TAXA_COUNT

TOLERANT_TAXA_COUNT_R TOTAL_ABUNDANCE TOTAL_ABUNDANCE_R TOTAL_SCORE TRICHOPTERA_TAXA_CNT TRICHOPTERA_TAXA_CNT_R TRICHOPTERA_TAXA_COUNT_NO_HYDR TRICHOPTERA_TAXA_COUNT_NO_R

For the Chessie-BIBI only sampling sites from streams and wadeable rivers of Strahler stream order 1-4 (1:100,000NHD layer) are scored. The River Continuum concept (Vannote et al. 1980) predicts biological community changes as streams and rivers increase in size. Similarly, scoring criteria for each macroinvertebrate metrics is based on bioregion-specific reference communities. "Bioregions" are regions of similar topography, soils, geologic features, and vegetation. Regional classification is known to minimize or remove differences in stream biological communities caused by natural factors (Omernik 1995). Currently seventeen metrics are used to calculate the Chessie-BIBI:

IBI_PARAMETER	Ridges	Mid-Atlantic Coastal Plain	Northern Appalachian Plateau & Upland	Northern Central Appalachian	Piedmont	South- Eastern Coastal Plain	Valleys
BECK_R	Х						X
EPT_TAXA_COUNT_NO_TOL_R				Х			
EPT_TAXA_COUNT_R		Х				Х	
FBI			Х		X		
FBI_R		Х				Х	
PCT_CLING_R		Х				Х	
PCT_COLLECT					X		
PCT_DIPTERA					X		
PCT_EPHEMEROPTERA	Х			Х			X
PCT_EPHEMEROPTERA_R		Х				Х	
PCT_EPT					X		
PCT_EPT_TAXA_RICH							X
PCT_GATHER			X				
PCT_PLECOPTERA			Х				
PCT_SCRAPER	X			X			X
PCT_SWIMMER	X						
PCT_TRICHOPTERA_NO_TOL			Х				
SW	X			Х	X		X
TAXA_RICH_R		Х	X	X		Х	

Table 10. Chessie BIBI Metric Selection by Ecoregion.

For the Mid-Atlantic Coastal Plain and Southeastern Coastal Plain regions, a version of the Coastal Plain Macroinvertebrate Index (CPMI) developed by the Mid-Atlantic Coastal Streams Workgroup and adapted to family-level taxonomic identifications for the Virginia Department of Environmental Quality was used to score region data (Maxted et. al.2000). For the remaining ecoregions a task group of the CBP Non-Tidal Data Analysis Workgroup developed scoring thresholds for metrics according to their similarity to Reference sites in each bioregion (areas with different geomorphologic traits). All metrics are scored on a 0 to 100 scale and Index total scores are rated on a 5-tiered scale.

P-IBI	Phytoplankton Community Condition
>67	Good
67-50	Fair-Good
49-30	Fair
17-29	Poor
<17	Very Poor

Table 11. Chessie B-IBI Ranges and Macroinvertebrate Community Condition

For full details on calculation protocol for all calculated metrics and scoring of the Chesapeake Bay basinwide Benthic Index of Biological Integrity please see the document <u>Development of a Basin-wide Benthic</u> <u>Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed:</u> <u>Final Report to the Chesapeake Bay Program Non-Tidal Water Quality Workgroup.</u> at the following locations:

http://www.chesapeakebay.net/documents/17686/chessiebibi_finalreport_05_09_2011.pdf

http://www.potomacriver.org/cms/publicationspdf/ICPRB11-01.pdf

REFERENCES

Alden, R.W., R.C. Dahiya and R.J. Young. (1982). A method for the enumeration of zooplankton samples. Journal of Experimental Marine Biology and Ecology 59:185-209.

Alden, R., H. Marshall, and K. Sellner. (1997). Phytoplankton indicators within the Chesapeake Bay Monitoring Program. Old Dominion University Research Foundation, <u>AMRL Tech. Rpt. 3051.</u> Norfolk, Va.,112 pp.

Alden, R. W., III, D. M. Dauer, J. A. Ranasinghe, L. C. Scott, and R. J. Llansó. (2002). Statistical verification of the Chesapeake Bay Benthic Index of Biotic Integrity. <u>Environmetrics</u>, 13:473-498.

Astin, L.E. (2006). Data synthesis and bioindicator development for nontidal streams in the interstate Potomac River basin, USA. <u>Ecological Indicators</u>, 6: 664-685.

Barbour, M. T., J. Gerritsen, G. E. Griffith, R. Frydenborg, E. McCarron, J. S. White, and M. L. Bastian. (1996). A framework for biological criteria for Florida streams using benthic macroinvertebrates. <u>Journal of the North American Benthological Society</u> 15:185-211.

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. (1999). <u>Rapid Bioassessment Protocols for</u> <u>Usein Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition.</u> EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water; Washington, D.C. Available online at: http://www.epa.gov/owow/monitoring/rbp/download.html

Bianchi, F., Acri, F., Bernardi, A., Beron, A., Boldrin, A., Camatti, E., Cassin, D., & Comaschi, A. (2003). Can Phytoplankton communities be considered as bio-indicators of Water Quality in the Lagoon of Venice? <u>Marine Pollution Bulletin</u>, 46, 964-971.

Buchanan, C., R.V. Lacouture, H.G. Marshall, M. Olson, J. Johnson. (2005). Phytoplankton reference communities for Chesapeake Bay and its tidal tributaries. <u>Estuaries</u> 28(1): 138-159.

Buchanan, C., K. Foreman, J. Johnson, and A. Griggs. (2011). Development of a Basin-wide Benthic Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed: Final Report to the Chesapeake Bay Program Non- Tidal Water Quality Workgroup. <u>ICPRB Report 11-1</u>. Report prepared for the US Environmental Protection Agency, Chesapeake Bay Program

Carpenter, K., Johnson, J.M. and Buchanan, C. (2006) An index of biotic integrity based on the summer polyhaline zooplankton community of the Chesapeake Bay. Marine Environmental Research 62:165-180

Jordan, S. J, & Vass, P. A. (2000). An Index of Ecosystem Integrity for Northern Chesapeake Bay. Environmental Science & Policy, 3, S59-S88.

Lacouture, R. V., J. M. Johnson, C. Buchanan, and H. G. Marshall (2006) Phytoplankton Index of Biotic Integrity for Chesapeake Bay and its Tidal Tributaries <u>Estuaries</u>, *Vol. 29, No.4, pgs. 598-616*.

Lenat, D. R. (1993). A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. <u>Journal of the North American Benthological</u> <u>Society</u> 12:279-290.

Marshall, H. G., R. V. Lacouture, C. Buchanan, and J. M. Johnson. (2006). Phytoplankton assemblages associated with water quality and salinity regions in Chesapeake Bay, USA. Estuarine, Coastal and Shelf Science 69:10-18.

Maxted, J., M. Barbour, J. Gerritsen, V. Poretti, N. Primrose, A. Silvia, D. Penrose, and R. Renfrow. (2000). Assessment framework for mid-Atlantic coastal plain streams using benthic macroinvertebrates. Journal of American Benthological Society, 19 (1): 128-144.

Omernik, J.M. (1995). Ecoregions: a spatial framework for environmental management, in Davis, W.S. and Simon, T.P. (eds.), <u>Biological assessment and criteria, tools for water resource planning and decision</u> <u>making.</u> Lewis Publishers, Boca Raton, Florida. p. 31-47.

Pearson, T. H. and R. Rosenberg. (1978). Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. <u>Oceanography and Marine Biology Annual Review</u> 16:229-311.

Ranasinghe, J. A., S. B. Weisberg, D. M. Dauer, L. C. Schaffner, R. J. Diaz, and J. B. Frithsen. (1994). <u>Chesapeake Bay Benthic Community Restoration Goals</u>. Prepared for the U.S. EPA Chesapeake Bay Program Office, the Governor's Council on Chesapeake Bay Research Fund, and the Maryland Department of Natural Resources by Versar, Inc., Columbia, MD.

Shannon, C. E. (1948). A mathematical theory of communication. <u>Bell System Technology Journal</u> 27:379-423, and 623-656.

Symposium on the Classification of Brackish Waters. (1958). The Venice System for the classification of marine waters according to salinity. <u>Oikos</u> 9:311-312.

US Environmental Protection Agency. (1988). <u>Chesapeake Bay Living Resources Monitoring Plan,</u> <u>Agreement Commitment Report.</u> Chesapeake Bay Program, Annapolis, Maryland, 94pp.

US Environmental Protection Agency. (1989). <u>Living Resources Data Management Plan, Revision 1.</u> Chesapeake Bay Program, Annapolis, MD, CBP/TRS 33/89.

US Environmental Protection Agency. (1993). <u>Chesapeake Bay Program Data Management Plan.</u> Chesapeake Bay Program, Annapolis, MD.

US Environmental Protection Agency. (2003). <u>Ambient water quality criteria for dissolved oxygen, water</u> clarity and chlorophyll a for the Chesapeake Bay and its tidal tributaries. EPA 903-R-03-002.

US Environmental Protection Agency. (2010). Western Ecology Division Ecoregion Maps and GIS Resources. US EPA Level IV ecoregion. Available online at: (http://www.epa.gov/wed/pages/ecoregions.htm)

Roman, S. (1997). Access Databases-Design and Programming. O'Reilly& Associates, Sebatopol, CA.

Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. (1980). The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37:130-137.

Weisberg, S. B., J. A. Ranasinghe, D. M. Dauer, L. C. Schaffner, R. J. Diaz, and J. B. Frithsen. (1997). An estuarine benthic index of biotic integrity (B-IBI) for the Chesapeake Bay. <u>Estuaries</u> 20:149-158.

Williams M.R., B.J. Longstaff, C. Buchanan, R. Llanso, and W.C. Dennison. (2009) Development and evaluation of a spatially-explicit index of Chesapeake Bay health. Mar. Poll. Bull. 59(1-3):14–25

APPENDIX A – DATA SET STRUCTURES FOR AVAILABLE CIMS/CDE DATA

June 2012

This appendix lists the field names, attributes and descriptions for the phytoplankton, zooplankton and tidal and non-tidal benthos data available through www.chesapeakebay.net. Note that these data structures represent query output and not represent the underlying structures of the relational databases from which the data is being served. If you are interested in more details about the actual relational databases please contact the Living Resources Data Manager. For complete data documentation, please see the data documentation files that accompany the data sets.

DISCLAIMER NOTICE: The CBP web page and all data documentation clearly request that data users acknowledge the original monitoring programs as the data originators in publications they reference or use the databases. Although these data have been processed successfully on a computer system at the Chesapeake Bay Program, no warranty expressed or implied is made regarding the accuracy or utility of the data on any other system or for general or scientific purposes, nor shall the act of distribution constitute any such warranty. This disclaimer applies both to individual use of the data and aggregate use with other data. It is strongly recommended that careful attention be paid to the contents of the data documentation file associated with these data. The Chesapeake Bay Program shall not be held liable for improper or incorrect use of the data described and/or contained herein.

Table A-1. Station Information File Format for All Plankton DataThis included phytoplankton, phytoplankton, mesozooplankton, microzooplankton, gelatinous zooplankton and primary production data.

Field Name	Туре	Width	Description
STATION	Text	15	Sampling Station
LATITUDE	Number	8.5	Latitude in Decimal Degrees (NAD83)
LONGITUDE	Number	8.5	Longitude in Decimal Degrees (NAD83)
LL_DATUM	Text	5	Latitude-Longitude Datum Code
DESCRIPTION	Text	225	Sampling Station Description
WATER_BODY	Text	50	Water Body Description
CBP BASIN	Text	30	Chesapeake Bay Program Basin
TS_BASIN	Text	30	Tributary Strategy Basin Designation
BASIN	Text	30	Major Basin Code
SUBBASIN	Text	30	Subbasin Code
FALL_LINE	Text	2	Fall Line Designation

The following field may also appear in a downloaded data set:

Name	Type	Width	Description
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_U	NIT_DES	CRIPTION	
_	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation
LL_DATUM	Text	5	Latitude and Longitude Geographic Datum
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DE	ESCRIPTI	ON	
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-2. Event Data File Format for All Plankton Data This included phytoplankton, phytoplankton, mesozooplankton, microzooplankton, gelatinous zooplankton and primary production data.

Field Name	Туре	Width	Description
SURVEY_ID	Number	8	Database Generated Event Identification Number
DATA_TYPE	Text	3	Sample Type Code
SOURCE	Text	10	Data Collection Agency
SAMPLE_TYPE	Text	2	Collection Type
SAMPLE_DATE	Date/Tim	е	
_		8	Sampling date (MM/DD/YYYY)
LAYER	Text	3	Layer of Water Column in Which Sample Was Taken
LATITUDE	Number	8.5	Latitude in Decimal Degrees (NAD83)
LONGITUDE	Number	8.5	Longitude in Decimal Degrees (NAD83)
P_DEPTH	Number	8.1	Composite Sample Cut-Off Depth
R_DATE	Date/Tim	е	
		8	Data Version Date (MM/DD/YYYY)
SALZONE	Text	2	Salinity Zone
SAMPLE_VOLUME	Number	8.3	Total Volume of Sample
UNITS	Text	15	Reporting Units of Sample Volume
STATION	Text	15	Sampling Station
TOTAL_DEPTH	Number	8.1	Total Station Depth (meters)
SAMPLE_TIME	Date/Tim	е	
		8	Sample Collection Time (HHMM)

Name	Туре	Width	Description
BASIN	Text	20	Chesapeake Bay Basin Designation
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_UN	IT_DESCF	RIPTION	
	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG 2003 DESCRIPTION			
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-3.	Phytoplankto	n and	Picoplankton Count Data File Format
Field Name	Туре	Width	Description
SURVEY ID	Number	8	Database Generated Event Identification Num

SURVEY_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	10	Data Collection Agency
SAMPLE_TYPE	Text	2	Collection Type
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
_		8	Sampling Date (MM/DD/YYYY)
LAYER	Text	3	Layer of Water Column in Which Sample Was Taken
SAMPLE_NUMBER	र		
	Number	8	Sample Number
GMETHOD	Text	3	Chesapeake Bay Program Gear Method Code
TSN	Text	7	ITIS Taxon Serial Number
LATIN_NAME	Text	45	Species Latin Name
SIZE	Text	30	Cell Size Groupings when taken
METHOD	Text	8	Chesapeake Bay Program Sample Analysis Code
PARAMETER	Text	15	Sampling Parameter Name
VALUE	Number	12.4	Sampling Parameter Value
UNITS	Text	15	Sampling Parameter Reporting Units
NODCCODE	Text	12	National Oceanographic Data Center Species Code
SPEC_CODE	Text	14	In-House Species Code
SER_NUM	Text	12	Sample Serial Number
R_DATE	Date/Tim	е	
		8	Version Date of Data (MM/DD/YYYY)

Name	Туре	Width	Description
BASIN	Text	20	Chesapeake Bay Basin Designation
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_UN	IT_DESC	RIPTION	
	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DE	SCRIPTIC	N	
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-4. Primary Production Data File Format

Field Name	Туре	Width	Description
SURVEY_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	10	Data Collection Agency
SAMPLE_TYPE	Text	2	Collection Type
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
_		8	Sample Date (MM/DD/YYYY)
LAYER	Text	3	Layer in Water Column from Which Sample Was Taken
SAMPLE_NUMBER	र		-
	Number	8	Sample Number
GMETHOD	Text	3	Chesapeake Bay Program Gear Method Code
CARBFIX	Number	8.2	Carbon Fixation Value
UNITS	Text	15	Carbon Fixation Reporting Units
QUALIFIER	Text	7	Detection Limit Qualifiers
METHOD	Text	8	Chesapeake Bay Program Analytical Method Code
CHLA	Number	8.2	Chlorophyll A µ/L)
ASMRATIO	Number	8.2	Production Efficiency (µg-C/µg-Chl)
SER_NUM	Text	12	Sample Serial Number
R_DATE	Date/Tim	е	
—		8	Data Version Date (MM/DD/YYYY)

The following field may also appear in a downloaded data set:

Name	Туре	Width	Description
BASIN	Text	20	Chesapeake Bay Basin Designation
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_UN	IT_DESCR	RIPTION	
_	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DES	SCRIPTIO	N	
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-5. Microzooplankton, Mesozooplankton and Gelatinous Zooplankton Count Data File Format

Field Name	Туре	Width	Description
SURVEY_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	10	Data Collection Agency
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
_		8	Sampling Date (MM/DD/YYYY)
LAYER	Text	3	Layer in Water Column from Which Sample was taken
SAMPLE_NUMBEF	2		
_	Number	8	Sample Number
GMETHOD	Text	3	Chesapeake Bay Program Sampling Gear Code
TSN	Text	7	ITIS Taxon Serial Number
LATIN_NAME	Text	45	Species Latin Name
LIFE_STAGE	Text	50	Life Stage of Individual
METHOD	Text	8	Parameter Method Analysis Code
PARAMETER	Text	10	Parameter Name
VALUE	Number	12.3	Parameter Value
UNITS	Text	15	Parameter Reporting Units.
NODCCODE	Text	12	NODC Species Code
SPEC_CODE	Text	14	Source Species Taxon Code
R_DATE	Date/Tim	е	
		8	Version Date of Data (MM/DD/YYYY)

Table A-5. Microzooplankton, Mesozooplankton and Gelatinous Zooplankton Count Data File Format-Continued

Name	Type	Width	Descriptio	<u>on</u>
BASIN	Text		20	Chesapeake Bay Basin Designation
HUC8	Text		8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_U	NIT_DES	CRIPTION		
_	Text		50	USGS Cataloging Unit Code Description
FIPS	Text		5	Federal Information Processing Code
STATE	Text		3	Federal Information Processing Code State Designation
COUNTY_CITY		Text		30 Federal Information Processing Code City/County Designation
CBSEG_2003	Text		6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DE	ESCRIPTI	ON		
	Text		50	2003 Chesapeake Bay Segment Designation Description

Table A-6. Composite Phytoplankton Metric Data File Format

Field Name	Туре	Width	Description
SURVEY_ID	Number	8	Database Generated Event Identification Number
STATION	Text	15	CBP Sampling Station
SAMPLE_DATE	Date/Time	8	Phytoplankton Sampling Date
SAMPLE_TIME	Date/Time	8	Phytoplankton Sampling Time
UP_DATE	Date/Time	8	Upper End of 3 Day Data Matching Window
DN_DATE	Date/Time	8	Lower End of 3 Day Data Matching Window
WQ DATE	Date/Time	8	Water Quality Sampling Date
SEASON	Text	6	CBP Season Designation
IBI LAYER	Text	2	Sample Laver
IBI ⁻ SALZONE	Text	1	Water Laver Salinity Zone Designation
CHL SURF	Number	12.4	Surface Chlorophyll A (0.5 M) uG/L
CHLORO ABUND	Number	12.4	Chlorophyte Abundance in Number/Liter
CHLOROBIOMASS	Number	12.4	Chlorophyte Biomass in uG Carbon/Liter
CHRYSO ABUND	Number	12.4	Chrysophyte Abundance in Number/Liter
CHRYSO BIOMASS	Number	12.4	Chrysophyte Biomass in uG Carbon/Liter
COCHLODINIUM			- J F. J
HET ABUND	Number	12.4	Cochlodinium Abundance in Number/Liter
COCHLODINIUM			
HET BIOMASS	Number	12 4	Cochlodinium Biomass in uG Carbon/Liter
CRYPTO ABUND	Number	12.4	Cryptophyte Abundance in Number/Liter
CRYPTO BIOMASS	Number	12.4	Cryptophyte Biomass in uG Carbon/Liter
CYANO ABUND	Number	12.4	Cvanophyte Abundance in Number/Liter
CYANO BIOMASS	Number	12.4	Cvanophyte Biomass in uG Carbon/Liter
	Number	12.4	Diatom Abundance in Number/Liter
DIATOM BIOMASS	Number	12.4	Diatom Biomass in uG Carbon/Liter
	Number	12.4	Dinoflaggelate Abundance in Number/Liter
DINO BIOMASS	Number	12.4	Dinoflaggelate Riomass in uG Carbon/Liter
	Number	12.4	Euclonenbyte Abundance in Number/Liter
EUGLENO BIOMASS	Number	12.4	Euglenophyte Biomass in uC Carbon/Liter
	Number	12.4	Hantonhyte Abundance in Number/Liter
HADTO RIOMASS	Number	12.4	Haptophyte Riomass in uC Carbon/Liter
MICBOCVETIE	Number	12.4	riapiopriyle biornass in µG Carbon//Liter
	Number	10.4	Micropystia Abundance in Number/Liter
	Number	12.4	
	Number	10.4	Misroevatia Diamaga in u.C. Carban/Litar
AER_BIOMASS	Number	12.4	Disenterstan Abundanas in Number/Liter
	Number	12.4	Picopiankton Abundance in Number/Liter
PICO_BIOMASS	Number	12.4	Picopiankton Biomass in μG Carbon/Liter
PRASINO_ABUND	Number	12.4	Prasinophyte Abundance in Number/Liter
PRASINO_BIOMASS	Number	12.4	Prasinophyte Biomass in µG Carbon/Liter
PROROCENTRUM_	N Is succession and	40.4	Design and the Minister Alexandra and in Neural and the s
	Number	12.4	Prorocentrum Minimum Abundance in Number/Liter
PROROCENTRUM_	N house have	40.4	Deserve Minimum Disease in 10 October (Liter
MIN_BIOMASS	Number	12.4	Prorocentrum Minimum Biomass in µG Carbon/Liter
TOT_ABUND	Number	12.4	Total Phytoplankton Abundance in Number/Liter
TOT_BIOMASS	Number	12.4	I otal Phytoplankton Biomass in µG Carbon/Liter
SALINITY	Number	12.4	Average Layer Salinity in PSU
PO4	Number	12.4	Average Layer PO4 In MG/L
DIN	Number	12.4	Average Layer Dissolved Organic N (NO2+NO3+NH4) In MG/L
SECCHI	Number	12.4	Secchi Depth in Meters
SECCHI_RANK	Text	8	Secchi Depth Rank-Relative Status Method
PO4_RANK	Text	8	PO4 Rank-Tom Fisher Nutrient Limitation Thresholds
DIN_RANK	lext	8	DIN Rank-Tom Fisher Nutrient Limitation Thresholds
CHLA	Number	12.4	Average Layer Chlorophyll a in µG /L
DO_VALUE	Number	12.4	Average Layer Dissolved Oxygen in MG/L
DOC	Number	12.4	Average Layer Dissolved Organic Carbon in MG/L
PC	Number	12.4	Average Layer Particulate Carbon in MG/L
PHEO	Number	12.4	Average Layer Pheophytin In µG /L
ISS	Number	12.4	Average Layer Total Suspended Solids MG/L
WIEMP	Number	12.4	Average Layer Water Temp Degrees Celsius
	Number	12.4	Average Layer Total Organic Carbon in MG/L
BIOMASS_CHL_RATIO	Number	12.2	I otal Phytoplankton Biomass to Surface Chlorophyll Ratio
UELL_SIZE	Number	12.2	Average Cell Size PG/Cell
CRIPTO_BIO_PCT	Number	12.2	Percent Cryptophyte Biomass
CYANO_BIO_PCT	Number	12.2	Percent Cyanophyte Biomass
DIATOM_BIO_PCT	Number	12.2	Percent Diatom Biomass
DINO_BIO_PCT	Number	12.2	Percent Dinoflaggelate Biomass
WQ_CATEGORY	rext	20	Fisher water Quality Category

Table A-6. Composite Phytoplankton Metric Data File Format-Continued

Field Name	Туре	Width	Description
LATITUDE	Number	8.5	Latitude in Decimal Degrees (NAD83)
LONGITUDE	Number	8.5	Longitude in Decimal Degrees (NAD83)

The following field may also appear in a downloaded data set:

Name	Туре	Width	Description	1
BASIN	Text	t	20	Chesapeake Bay Basin Designation
HUC8	Text	t	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING UN	IT DESCH	RIPTION		
-	_ Text	t	50	USGS Cataloging Unit Code Description
FIPS	Text	t	5	Federal Information Processing Code
STATE	Text	t	3	Federal Information Processing Code State Designation
COUNTY CITY	Text	t	30	Federal Information Processing Code City/County Designation
CBSEG 2003	Text	t	6	2003 Chesapeake Bay Segment Designation
CBSEG 2003 DES	SCRIPTIO	N		
	Text	t	50	2003 Chesapeake Bay Segment Designation Description

Table A-7. Phytoplankton Index of Biotic Integrity Metric Data File Format

Field Name	Туре	Width	Description
SURVEY_ID	Number	8	Database Generated Event Identification Number
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Tim	е	
		8	Sample Collection Time (HHMM)
IBI_PARAMETER	Text	15	IBI Parameter
IBI_VALUE	Number	8.4	Parameter Value
IBI_SCORE	Number	8.0	Value Reporting Units
IBI_SALZONE	Text	1	Water Layer Salinity Zone Designation
R_DATE	Date/Tim	е	
		8	Data Version Date (MM/DD/YYYY)
SEASON	Text	6	CBP Season Designation
DATA_TYPE	Text	3	Sample Type Code
LATITUDE	Number	8.5	Latitude (Decimal Degrees-NAD83)
LONGIDUDE	Number	8.5	Longitude (Decimal Degrees-NAD83)
SITE_TYPE	Text	10	Sampling Site Type

ine rene mig i	iona may aloo app	our ma	
Name	Туре	Width	Description
BASIN	Text	20	Chesapeake Bay Basin Designation
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_U	NIT_DESCRIPTION		
_	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG 2003 DE	SCRIPTION		
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-8. In Situ Fluorescence Data File Format

FIELD_DATA_INDEX SOURCE	Number Text	8 10	Database Generated Event Identification Number Data Collection Agency
SAMPLE DATE	Date/Time	е	5,
_		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Time	е	
		8	Sample Collection Time (HH:MM:SS)
LATITUDE	Number	8.5	Latitude in Decimal Degrees
LONGITUDE	Number	8.5	Longitude in Decimal Degrees
STATION	Text	15	Sampling Station
SAMPLE_TYPE	Text	7	Sample Type
SAMPLE_DEPTH	Number	8.1	Sample Collection Depth (Meters)
REPORTING_PAR	AMETER		
_	Text	10	Reporting Parameter
REPORTING_VALU	JE		
_	Number	8.2	Reporting Parameter Value
REPORTING_VOL	TS		
_	Number	8	Instrument Reporting Voltages
REPORTING_UNIT	S		
_	Text	10	Parameter Reporting Units
QUALIFIER	Text	10	Chlorophyll A Detection Limit Qualifier
METHOD	Text	5	Chlorophyll A Method Code
PROJECT	Text	10	Chesapeake Bay Program Project Identifier
PROGRAM	Text	10	Chesapeake Bay Program Monitoring Program Identifier
R_DATE	Date/Time	e	
_		8	Version Date of Data (MM/DD/YYYY)
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
FIPS	Text	5	Federal Information Processing Code
LL_DATUM	Text	5	Latitude And Longitude Geographic Datum
SER_NUM	Text	12	Sample Serial Number
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation

Table A-9. Tidal Benthic Event Data Files

Field Name	Туре	Width	Descriptions
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
SAMPLE_DATE	Text	8	Sampling Date (MM/DD/YYYY)
LATITUDE	Number	8.5	Latitude (Decimal Degrees- NAD83)
LONGITUDE	Number	8.5	Longitude (Decimal Degrees-NAD83)
R_DATE	Text	8	Data Version Date (MM/DD/YYYY)
SITETYPE	Text	4	Sampling Site Type
STATION	Text	15	Sampling Station
TOTAL_DEPTH	Number	8.1	Total Station Depth (Meters)
SAMPLE_TIME	Text	5	Sample Collection Time (HHMM)

The following field may also appear in a downloaded data set:

	···· · · · · · · · · · · · · · · · · ·			
Name	Туре	Width	Description	
BASIN	Text	20	Chesapeake Bay Basin Designation	
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code	
CATALOGING_UN	IIT_DESCI	RIPTION		
_	Text	50	USGS Cataloging Unit Code Description	
FIPS	Text	5	Federal Information Processing Code	
STATE	Text	3	Federal Information Processing Code State Designation	
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation	
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation	
CBSEG 2003 DESCRIPTION				
	Text	50	2003 Chesapeake Bay Segment Designation Description	

Table A-10. Tidal Benthic Biota Event Data Files

Field Name	Туре	Width	Descriptio	<u>on</u>
EVENT_ID	Number	8	Database	Generated Event Identification Number
SOURCE	Text		6	Data Collection Agency
SAMPLE_DATE	Date/Tim	е	8	Sampling Date (MM/DD/YYYY)
LATITUDE	Number	8.5	Latitude (Decimal Degrees-NAD83)
LONGITUDE	Number	8.5	Longitude	e (Decimal Degrees-NAD83)
PENETR	Number	8.4	Sampling	Gear Penetration Depth (cm)
R DATE	Date/Tim	е	8	Data Version Date (MM/DD/YYYY)
SAMPLE_NUMBEF	र			· · · ·
_	Number	8.0	Sample N	lumber
SITE_TYPE	Text		10	Sampling Site Type
STATION	Text		15	Sampling Station
TOTAL DEPTH	Number	8.1	Total Stat	tion Depth (Meters)
SAMPLE TIME	Date/Tim	е	8	Sample Collection Time (HHMM)

Name	Туре	Width	Description	
BASIN	Text	20	Chesapeake Bay Basin Designation	
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code	
CATALOGING_UN	IT_DESCF	RIPTION		
_	Text	50	USGS Cataloging Unit Code Description	
FIPS	Text	5	Federal Information Processing Code	
STATE	Text	3	Federal Information Processing Code State Designation	
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation	
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation	
CBSEG 2003 DESCRIPTION				
	Text	50	2003 Chesapeake Bay Segment Designation Description	

Table A-11. Tidal Benthic Count Data Files

Field Name		Туре	Width Descriptions
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
SAMPLE_TYPE	Text	7	Sample Collection Type
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
_		8	Sampling Date (MM/DD/YYYY)
SAMPLE_NUMBEF	RNumber	8.0	Sample Number
GMETHOD	Text	3	Chesapeake Bay Program Gear Method Code
CONVFACT	Number	8.2	Conversion Factor (# Individual/Sample to # Individuals/Meter Squared)
NET_MESH	Number	8.2	Screen Mesh Width (Millimeters)
TSN	Text	7	ITIS Taxon Serial Number
LIFE_STAGE	Text	45	Species Life Stage
LATIN_NAME	Text	45	Species Latin Name
REPORTING_VALU	JE		
_	Number	12	Total Count of Given Taxa in Sample
REPORTING_UNIT	S		
_	Text	15	Reporting Units of Value
NODCCODE	Text	12	National Oceanographic Data Center Species Code
SPEC_CODE	Text	14	Agency Species Code
SER NUM	Text	12	Sample Serial Number
R_DATE	Date/Tim	е	
—		8	Data Version Date (MM/DD/YYYY)

The following field may also appear in a downloaded data set:

Name	Туре	Width	Description	
BASIN	Text	20	Chesapeake Bay Basin Designation	
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code	
CATALOGING_UN	IT_DESCF	RIPTION		
_	Text	50	USGS Cataloging Unit Code Description	
FIPS	Text	5	Federal Information Processing Code	
STATE	Text	3	Federal Information Processing Code State Designation	
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation	
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation	
CBSEG 2003 DESCRIPTION				
	Text	50	2003 Chesapeake Bay Segment Designation Description	

Table A-12. Benthic Biomass Data Files

Database Generated Event Identification Number Data Collection Agency
Data Collection Agency
Sample Collection Type
Sampling Station
Sampling Date (MM/DD/YYYY)
Sample Number
Chesapeake Bay Program Gear Method Code
Conversion Factor (# Individual/Sample to # Individuals/Meter Squared)
Screen Mesh Width (Millimeter)
ITIS Taxon Serial Number
Organisms Life Stage
Species Latin Name
Actual or Estimated Parameter Value
Taxon Biomass
Sampling Parameter Reporting Units
National Oceanographic Data Center Species Code
Agency Species Code
Agency Sample Serial Number
Data Version Date (MM/DD/YYYY)

Table A-12. Benthic Biomass Data Files-Continued

The following fi	The following field may also appear in a downloaded data set:					
Name	Туре	Width	Description			
BASIN	Text	20	Chesapeake Bay Basin Designation			
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code			
CATALOGING_UN	VIT_DESC	CRIPTION				
	Text	50	USGS Cataloging Unit Code Description			
FIPS	Text	5	Federal Information Processing Code			
STATE	Text	3	Federal Information Processing Code State Designation			
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation			
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation			
CBSEG_2003_DESCRIPTION						
	Text	50	2003 Chesapeake Bay Segment Designation Description			

A-13. Benthic Water Quality Data Files

Field Name	Туре	Width	Descriptions
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
SAMPLE_TYPE	Text	2	Sample Collection Type
STATION	Text	15	Sampling Station
SAMPLE_DATE	Text	8	Sampling Date (MM/DD/YYYY)
SAMPLE_DEPTH	Number	8.1	Sampling Depth
SAMPLE_NUMBEF	RNumber	8.0	Sample Number
REPORTED_PARA	METER		
	Text	15	Sampling Parameter
REPORTED_VALU	E		
	Number	8.4	Sampling Parameter Value
REPORTED_UNITS	S		
	Text	15	Reporting Units of Value
WQ_METHOD	Text	8	Chesapeake Bay Program Parameter Analysis Code
R DATE	Text	8	Data Version Date (MM/DD/YYYY)

Name	Туре	Width	Description
BASIN	Text	20	Chesapeake Bay Basin Designation
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_UN	IT_DESCF	RIPTION	
	Text	50	USGS Cataloging Unit Code Description
FIPS	Text	5	Federal Information Processing Code
STATE	Text	3	Federal Information Processing Code State Designation
COUNTY_CITY			
	Text	30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DES	SCRIPTIO	N	
	Text	50	2003 Chesapeake Bay Segment Designation Description

Table A-14. Benthic Sediment Data Files

Field Name	Type Width		Descriptions	
EVENT_ID	Number	8	Database Generated Event Identification Number	
SOURCE	Text	6	Data Collection Agency	
SAMPLE_TYPE	Text	2	Sample Collection Type	
STATION	Text	15	Sampling Station	
SAMPLE_DATE	Text	8	Sampling Date (MM/DD/YYYY)	
TOTAL_DEPTH	Number	8.1	Total Station Depth	
SAMPLE_NUMBER	Number	8.0	Sample Number	
REPORTED_PARAMETER				
	Text	15	Sampling Parameter	
REPORTED_VALUE	Number	8.4	Sampling Parameter Value	
REPORTED UNITS	Text	15	Reporting Units of Value	
R_DATE	Text	8	Data Version Date (MM/DD/YYYY)	

The following field may also appear in a downloaded data set:

Name	Туре	Width	Descripti	on
BASIN	Text		20	Chesapeake Bay Basin Designation
HUC8	Text		8	USGS Eight Digit Hydrologic Unit Code
CATALOGING_U	NIT_DESC	RIPTION		
_	Text		50	USGS Cataloging Unit Code Description
FIPS	Text		5	Federal Information Processing Code
STATE	Text		3	Federal Information Processing Code State Designation
COUNTY_CITY	Text		30	Federal Information Processing Code City/County Designation
CBSEG_2003	Text		6	2003 Chesapeake Bay Segment Designation
CBSEG_2003_DE	ESCRIPTIO	NC		
	Text		50	2003 Chesapeake Bay Segment Designation Description

Table A-15. Benthic Index of Biotic Integrity Data Files

Field Name	Туре	Width	Description
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
SAMPLE_DATE	Date/Time		
		8	Sampling Date (MM/DD/YYYY)
LATITUDE	Number	8.5	Latitude (Decimal Degrees-NAD83)
LONGITUDE	Number	8.5	Longitude (Decimal Degrees-NAD83)
R_DATE	Date/Tim	е	
		8	Data Version Date (MM/DD/YYYY)
SITE_TYPE	Text	10	Sampling Site Type
STATION	Text	15	Sampling Station
TOTAL_DEPTH	Number	8.1	Total Station Depth (Meters)
SAMPLE_TIME	Date/Tim	е	
		8	Sample Collection Time (HHMM)
IBI_PARAMETER	Text	15	IBI Parameter
IBI_VALUE	Number	8.4	Parameter Value
IBI_SCORE	Number	8.0	Value Reporting Units

Name	Туре	Width	Description		
BASIN	Text	20	Chesapeake Bay Basin Designation		
HUC8	Text	8	USGS Eight Digit Hydrologic Unit Code		
CATALOGING UNIT DESCRIPTION					
_	Text	50	USGS Cataloging Unit Code Description		
FIPS	Text	5	Federal Information Processing Code		
STATE	Text	3	Federal Information Processing Code State Designation		
COUNTY_CITY	Text	30	Federal Information Processing Code City/County Designation		
CBSEG_2003	Text	6	2003 Chesapeake Bay Segment Designation		
CBSEG_2003_DESCRIPTION					
	Text	50	2003 Chesapeake Bay Segment Designation Description		
Table A-16. Non-Tidal Benthic Event Data Files

Field Name	Туре	Width	Description
EVENT_ID	Number	8	Database Generated Event Identification Number
AGENCY_CODE	Text	6	Data Collection Agency
STATION_ID	Text	50	Sampling Station
SAMPLE_DATE	Date/Time	е	
_		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Time	e	
		8	Sample Collection Time (HHMM)
EVENT_TYPE	Text	3	Sampling Event Type
EVENT_LATITUDE	Number DE	8.5	Latitude (Decimal Degrees-NAD83)
	Number	8.5	Longitude (Decimal Degrees-NAD83)
LL DATUM	Text	5	Latitude-Longitude Datum Code
ECOREGION LEVI	EL3		0
-	Text	5	Level 3 EPA Ecoregion Code
ECOREGION_LEV	EL3_NAM	E	-
_	Text	50	Level 3 EPA Ecoregion Description
CBP_IBI_REGION			
	Text	10	Chesapeake Bay Program IBI Region Code
CBP_IBI_REGION_	NAME		
	Text	50	Chesapeake Bay Program IBI Region Code Description
FIPS	Text	5	Federal Information Processing Code
STATE_INITIALS	Text	3	Federal Information Processing Code State Designation
COUNTY_NAME	Text	30	Federal Information Processing Code City/County Designation
HUC_12	Text	8	USGS Twelve Digit Hydrologic Unit Code
HUC_8	Text	8	USGS Eight Digit Hydrologic Unit Code
SUBBASINT_DESC	CRIPTION		
	Text	50	USGS Eight Digit Hydrologic Unit Code Description
STRAHLER_STRE	AM_ORDE	IR	
	Number	3	Strahler Stream Order Designation for Station
SITE_TYPE	Text	10	Sampling Site Type
HABITAT_TYPE	Text	10	Sampling Site Habitat Type
UTM_X	Number	8	UTM Zone 18 N X-Coordinate
UTM_Y	Number	8	UTM Zone 18 N Y-Coordinate
KARST	Text	10	USGS Karst Site Designation
R_DATE	Date/Time	е	
		8	Data Version Date (MM/DD/YYYY)

Table A-17. Non-Tidal Benthic Habitat Assessment Data Files

Field Name	Туре	Width	Description
EVENT_ID	Number	8	Database Generated Event Identification Number
AGENCY_CODE	Text	6	Data Collection Agency
STATION_ID	Text	50	Sampling Station
SAMPLE_DATE	Date/Tim	е	
_		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Tim	е	
_		8	Sample Collection Time (HH:MM:SS)
SAMPLE_NUMBEF	R Num	nber	8.0 Sample Number
REPORTING PAR	AMETER		
-	Text	15	Sample Reporting Parameter
REPORTING_VALU	JE		
_	Number	8.4	Sample Reporting Parameter Value
HAB_METHOD	Text	10	Habitat Reporting Method
R_DATE	Text	8	Data Version Date (MM/DD/YYYY)
FIPS	Text	5	Federal Information Processing Code
STATE_INITIALS	Text	3	Federal Information Processing Code State Designation
COUNTY_NAME	Text	30	Federal Information Processing Code City/County Designation
HUC_8	Text	8	USGS Eight Digit Hydrologic Unit Code
SUBBASINT_DESC	CRIPTION		
_	Text	50	USGS Eight Digit Hydrologic Unit Code Description
ECOREGION_LEV	EL3		
_	Text	5	Level 3 EPA Ecoregion Code
ECOREGION_LEV	EL3_NAM	E	-
_	Text	50	Level 3 EPA Ecoregion Description

Table A-18. Non-Tidal Benthic Count Data Files

Field Name	Туре	Width	Descriptions
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text		6 Data Collection Agency
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Tim	е	
		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Tim	е	
		8	Sample Collection Time (HH:MM:SS)
SAMPLE_NUMBER	RNumber	8.0	Sample Number
TSN	Text	7	ITIS Taxon Serial Number
NODCCODE	Text	12	National Oceanographic Data Center Species Code
LATIN_NAME	Text	45	Species Latin Name
LIFE_STAGE	Text	45	Species Life Stage
REPORTING_PAR	AMETER		
	Number	12	Sample Reporting Parameter
REPORTING_VAL	UE		
	Number	12	Total Count of Given Taxa in Sample
REPORTING_UNI	ſS		
	Text	15	Reporting Units of Value
BIO_METHOD	Text	3	Chesapeake Bay Program Biological Enumeration Method Code
G_METHOD	Text	3	Chesapeake Bay Program Gear Method Code
SAMPLE_TYPE	Text	2	Sample Collection Type
FIPS	Text	5	Federal Information Processing Code
STATE_INITIALS	Text	3	Federal Information Processing Code State Designation
COUNTY_NAME	Text	30	Federal Information Processing Code City/County Designation
HUC_8	Text	8	USGS Eight Digit Hydrologic Unit Code
SUBBASINT_DES	CRIPTION		
	Text	50	USGS Eight Digit Hydrologic Unit Code Description
ECOREGION_LEV	EL3		
	Text	5	Level 3 EPA Ecoregion Code
ECOREGION_LEV	EL3_NAM	E	
	Text	50	Level 3 EPA Ecoregion Description

Table A-19. Non-Tidal Benthic Water Quality Data Files

Field Name	Туре	Width I	Descriptions_
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text		6 Data Collection Agency
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Time	е	
		8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Time	е	
		8	Sample Collection Time (HH:MM:SS)
SAMPLE_NUMBEF	RNumber	8.0	Sample Number
SAMPLE_TYPE	Text	2	Sample Collection Type
SAMPLE_REPLICA	TE_TYPE		
	Text	2	Sample Replicate Type Code
LAYER	Text	3	Layer of Water Column in Which Sample Was Taken
DEPTH	Number	8.1	Sample Depth in Meters
REPORTING_PAR	AMETER		
	Number	12	Sample Reporting Parameter
REPORTING_VALU	JE		
	Number	12	Total Count of Given Taxa in Sample
REPORTING_UNIT	S		
	Text	15	Reporting Units of Value
QUALIFIER	Text	3	Chesapeake Bay Program Detection Limit Qualifier
WQ_METHOD	Text	3	Chesapeake Bay Program Analytical Method Code
PROBLEM_CODE	Text	3	Chesapeake Bay Program Analytical Problem Code
DETAILS	Text	3	Analytical Problem Code Details

Table A-19. Non-Tidal Benthic Water Quality Data Files-Continued

Field Name	Туре	Width	Descriptio	ns_
FIPS	Text	5	Federal	nformation Processing Code
STATE_INITIALS	Text	3	Federal	nformation Processing Code State Designation
COUNTY_NAME	Text	30	Federal	nformation Processing Code City/County Designation
HUC_8	Text	8	USGS E	ight Digit Hydrologic Unit Code
SUBBASINT_DESCRIPTION				
_	Text	50	USGS E	ight Digit Hydrologic Unit Code Description
ECOREGION_LE\	/EL3			
	Text		5	Level 3 EPA Ecoregion Code
ECOREGION LEVEL3 NAME				
_	Text		50	Level 3 EPA Ecoregion Description

Table A-20. Benthic Index of Biotic Integrity Data Files

Field Name	Туре	Width	Description
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
STATION	Text	15	Sampling Station
SAMPLE DATE	Date/Tim	е	
-		8	Sampling Date (MM/DD/YYYY)
SAMPLE TIME	Date/Tim	е	
-		8	Sample Collection Time (HH:MM:SS)
SAMPLE NUMBER	RNumber	8.0	Sample Number
IBI PARAMETER	Text	15	IBI Parameter
IBI VALUE	Number	8.4	Parameter Value
IBI SCORE	Number	8.0	Value Reporting Units
R DATE	Date/Tim	е	
-		8	Data Version Date (MM/DD/YYYY)
IBI METHOD	Text	3	Chesapeake Bay Program Index of Biotic Integrity Method Code
FIPS	Text	5	Federal Information Processing Code
STATE INITIALS	Text	3	Federal Information Processing Code State Designation
COUNTY_NAME	Text	30	Federal Information Processing Code City/County Designation
HUC 8	Text	8	USGS Eight Digit Hydrologic Unit Code
SUBBASINT DESC	CRIPTION		
-	Text	50	USGS Eight Digit Hydrologic Unit Code Description
ECOREGION LEV	EL3		
-	Text	5	Level 3 EPA Ecoregion Code
ECOREGION LEV	EL3 NAM	E	•
-	Text	50	Level 3 EPA Ecoregion Description

Table A-21. Composite Non-Tidal Benthic Metric Data File Format

Field Name	Туре	Width	Description
EVENT_ID	Number	8	Database Generated Event Identification Number
SOURCE	Text	6	Data Collection Agency
STATION	Text	15	Sampling Station
SAMPLE_DATE	Date/Time	8	Sampling Date (MM/DD/YYYY)
SAMPLE_TIME	Date/Time	8	Sample Collection Time (HH:MM:SS)
ASPT_MOD	Number	8.4	Average tolerance Score per Taxon modified to family level
ASPT_MOD_R	Number	8.4	Average tolerance Score per Taxon modified to family level
			Calculated on Rarefaction Data
BECK	Number	8.4	Beck's Index-classical calculation
BECK_R	Number	8.4	Beck's Index-classical calculation-calculated on Rarefaction Data
DIPTERA_TAXA_CNT	Number	8.4	Number of Diptera Taxa
DIPTERA_TAXA_CNT_R	Number	8.4	Number of Diptera Taxa -calculated on Rarefaction Data
EPHEMEROPTERA_TAXA_C	CNT		
	Number	8.4	Number of Ephemeroptera Laxa
EPHEMEROPTERA_TAXA_C	NI_R		
	Number	8.4	Number of Ephemeroptera Taxa-calculated on Rarefaction Data
EPI_IAXA_ABUND	Number	8.4	Total abundance of Ephemeroptera, Plecoptera & Trichoptera
EPI_IAXA_ABUND_R	Number	8.4	Total abundance of Ephemeroptera, Plecoptera & Trichoptera
			-calculated on Raretaction Data
EPI_IAXA_COUNT	Number	8.4	Number of Ephemeroptera, Plecoptera & Trichoptera taxa
EPI_IAXA_COUNI_NO_IO	L	0.4	
EDT TAVA COUNT NO TO	number	8.4	Number of Ephemeroptera, Piecoptera & Trichoptera taxa excluding tolerant taxa
EPI_IAXA_COUNI_NO_IO	L_R	0.4	
	Number	8.4	Number of Ephemeroptera, Piecoptera & Trichoptera taxa excluding tolerant taxa-
EDT TAVA COUNT D	Number	0.4	Calculated on Ratelaction Data
EPT_TAXA_COUNT_R	Number	8.4	Calculated on Derefection Date
EDI	Number	0 /	Calculated off Ratefaction Data
	Number	0.4	Family level Hilsenhoff Diotic Index
	Number	0.4 0 /	Fairing level miserinon block maes, calculated on Rateracion Data
	Number	0.4 Q /	1 relative percentage abundance of Castropods, Oligochaeta and Diptera
GOLD_K	Number	0.4	calculated on Parefaction Data
MADCALEES	Number	8.4	Margalaf Index of community diversity
	Number	0.4 8 /	Margalet Index of community diversity calculated on Parefaction Data NCO_TAXA_CNT
MARGALET 5_R	Number	0.4 Q /	Total Tava Count omitting chironomidae and oligochaeta
ΝΟΟ ΤΑΧΑ ΟΝΤ Ρ	Number	0.4 8.1	Total Taxa Count omitting chironomidae and oligochaeta
	Number	0.4	-calculated on Parefaction Data
NON INSECT TAXA ONT	Number	84	Non-Insect Taxa Count
NON INSECT TAXA CNT F	? Number	8.4	Non-Insect Taxa Count-calculated on Rarefaction Data
PCT_BURROWER	Number	8.4	Percent Burrower Abundance
PCT BURROWER R	Number	8.4	Percent Burrower Abundance-calculated on Rarefaction Data
PCT_CHIRONOMIDAE	Number	8.4	Percent Chironomidae Abundance
PCT CHIRONOMIDAE R	Number	8.4	Percent Chironomidae Abundance-calculated on Rarefaction Data
PCT_CLIMB	Number	8.4	Percent Climbers Abundance
PCT CLIMB R	Number	8.4	Percent Climbers Abundance-calculated on Rarefaction Data
PCT CLING	Number	8.4	Percent Clinger Abundance
PCT CLING R	Number	8.4	Percent Clinger Abundance-calculated on Rarefaction Data
PCT_CLINGER_TAXA	Number	8.4	Percent Clinger taxa
PCT_CLINGER_TAXA_R	Number	8.4	Percent Clinger taxa-calculated on Rarefaction Data
PCT_COLLECT	Number	8.4	Percent Collector Abundance
PCT_COLLECT_R	Number	8.4	Percent Collector Abundance-calculated on Rarefaction Data
PCT_DIPTERA	Number	8.4	Percent Diptera Abundance
PCT_DIPTERA_R	Number	8.4	Percent Diptera Abundance-calculated on Rarefaction Data
PCT_DOM1	Number	8.4	Percent Dominant taxa
PCT_DOM1_R	Number	8.4	Percent Dominant taxa-calculated on Rarefaction Data
PCT_DOM2	Number	8.4	Percent Two Dominant taxa
PCT_DOM2_R	Number	8.4	Percent Two Dominant taxa-calculated on Rarefaction Data
PCT_DOM3	Number	8.4	Percent Three Dominant taxa
PCT_DOM3_R	Number	8.4	Percent Three Dominant taxa-calculated on Rarefaction Data
PCT_EPHEMEROPTERA	Number	8.4	Percent Ephemeroptera Abundance
PCT_EPHEMEROPTERA_R	Number	8.4	Percent Ephemeroptera Abundance-calculated on Rarefaction Data
PCT_EPT	Number	8.4	Percent Ephemeroptera, Plecoptera & Trichoptera Abundance
PCT_EPT_R	Number	8.4	Percent Ephemeroptera, Plecoptera & Trichoptera Abundance
			-calculated on Rarefaction Data
PCT_EPT_TAXA_RICH	Number	8.4	Percent Ephemeroptera, Plecoptera & Trichoptera Taxa
PCI_EPT_TAXA_RICH_R	Number	8.4	Percent Ephemeroptera, Plecoptera & Trichoptera Taxa
			-calculated on Rarefaction Data

Table A-21. Composite Non-Tidal Benthic Metric Data File Format-Continued

Field Name	Туре	Width	Description			
PCT_FILTERERS	Number	8.4	Percent Filterer Abundance			
PCT_FILTERERS_R	Number	8.4	Percent Filterer Abundance-calculated on Rarefaction Data			
PCT GATHER	Number	8.4	Percent Gatherer Abundance			
PCT GATHER R	Number	8.4	Percent Gatherer Abundance-calculated on Rarefaction Data			
PCT_LIMESTONE	Number	8.4	Percent Limestone Taxa (Isopod + Amphidoda + Ephemerella) Abundance			
PCT LIMESTONE R	Number	8.4	Percent Limestone Taxa (Isopod + Amphidoda + Ephemerella) Abundance			
			-calculated on Rarefaction Data			
PCT_NET_CADDISFLY	Number	8.4	Percent Net Caddisflies Abundance			
PCT_NET_CADDISFLY_R	Number	8.4	Percent Net Caddisflies Abundance-calculated on Rarefaction Data			
PCT_NON_INSECT	Number	8.4	Percent Non-Insects Abundance			
PCT_NON_INSECT_R	Number	8.4	Percent Non-Insects Abundance-calculated on Rarefaction Data			
PCT_PLECOPTERA	Number	8.4	Percent Plecoptera Abundance			
PCT_PLECOPTERA_R	Number	8.4	Percent Plecoptera Abundance-calculated on Rarefaction Data			
PCT_PREDATOR	Number	8.4	Percent Predator Abundance			
PCT_PREDATOR_R	Number	8.4	Percent Predator Abundance-calculated on Rarefaction Data			
PCT_SCRAPER	Number	8.4	Percent Scrapers Abundance			
PCT_SCRAPER_R	Number	8.4	Percent Scrapers Abundance-calculated on Rarefaction Data			
PCT_SENSITIVE	Number	8.4	Percent Sensitive (TV<=3) Abundance			
PCT_SENSITIVE_R	Number	8.4	Percent Sensitive (TV<=3) Abundance-calculated on Rarefaction Data			
PCT_SHREDDER	Number	8.4	Percent Shredder Abundance			
PCT_SHREDDER_R	Number	8.4	Percent Shredder Abundance-calculated on Rarefaction Data			
PCT_SIMULIIDAE	Number	8.4	Percent Simulidate (Black fly) Abundance			
PCT_SIMULIIDAE_R	Number	8.4	Percent Simulidate (Black fly) Abundance-calculated on Rarefaction Data			
PCT_SWIMMER	Number	8.4	Percent Swimmers Abundance			
PCT_SWIMMER_R	Number	8.4	Percent Swimmers Abundance-calculated on Rarefaction Data			
PCT_TOLERANT	Number	8.4	Percent Tolerant (TV>=7) Abundance			
PCT_TOLERANT_R	Number	8.4	Percent Tolerant (TV>=7) Abundance-calculated on Rarefaction Data			
PCT_TRICHOPTERA	Number	8.4	Percent Trichoptera Abundance			
PCT_TRICHOPTERA_NO_TO	DL					
	Number	8.4	Percent Trichoptera Abundance excluding Hydropsychidae			
PCT_TRICHOPTERA_NO_TO	DL_R					
	Number	8.4	Percent Trichoptera Abundance excluding Hydropsychidae			
			-calculated on Rarefaction Data			
PCT_TRICHOPTERA_R	Number	8.4	Percent Trichoptera Abundance-calculated on Rarefaction Data			
PLECOPTERA_TAXA_CNT	Number	8.4	Plecoptera Taxa count			
PLECOPIERA_IAXA_CNI_I	₹ <u></u>					
	Number	8.4	Plecoptera Taxa count-calculated on Rarefaction Data			
RATIO_SC_TO_CF	Number	8.4	Ratio of Scrapers to Collector Filterers			
RATIO_SC_TO_CF_R	Number	8.4	Ratio of Scrapers to Collector Filterers-calculated on Rarefaction Data			
RATIO_SC_TO_SH	Number	8.4	Ratio of Scrapers to Shredders			
RATIO_SC_TO_SH_R	Number	8.4	Ratio of Scrapers to Shredders-calculated on Rarefaction Data			
RATIO_SH_TO_CG	Number	8.4	Ratio of Shredders to Collector Gatherers			
RATIO_SH_TO_CG_R	Number	8.4	Ratio of Shredders to Collector Gatherers-calculated on Rarefaction Data			
SCRAPER_TAXA_CNT	Number	8.4	Scraper Laxa Count			
SCRAPER_TAXA_CNT_R	Number	8.4	Scraper Taxa Count-calculated on Rarefaction Data			
SENSITIVE_TAXA_COUNT	Number	8.4	Sensitive Laxa Count (TV<=3)			
SENSITIVE_TAXA_COUNT_I	≺ Numehon	0.4	Constitue Tous Count (T) (2) coloulated on Dourforther Date			
	Number	8.4	Sensitive Taxa Count (TV<=3)-calculated on Rarefaction Data			
SIMPSON_DIVERSITY	Number	8.4	Simpson's Diversity Index			
SIMPSON_DIVERSITY_R	Number	8.4	Simpson's Diversity Index-calculated on Rarefaction Data			
SW	Number	8.4	Snannon weiner Diversity Index			
SW_R	Number	8.4	Snannon weiner Diversity Index-calculated on Raretaction Data			
TAXA_RICH	Number	8.4	Total Taxa Count			
TAXA_RICH_R	Number	8.4	Total Taxa Count -calculated on Rafefaction Data			
TOLERANT_TAXA_COUNT	numbei	8.4	10 erail raxa Court (1V>=7)			
TOLERANT_TAXA_COUNT_	Numbor	0 /	Talarant Taya Count (TV), 7) calculated on Darafaction Data			
	Number	0.4	Totel Ahundenee			
TOTAL_ADUNUANCE D	Number	0.4 0 /	Total Abundance calculated on Darefaction Date			
TOTAL_ADUNUANUE_K	Number	0.4 0 /	i utai Abunudhile-lailuidteu un Kareidliiun Dälä Total IDI Score for Site			
TDICHODTEDA TAVA CNIT	Number	0.4 Q /	Trichontora Tava Count			
	D	0.4	ποιοριστα ταλά συμπ			
TRIGHOFTERA_TAXA_CIVI_	Number	8.4	Trichontera Taxa Count-calculated on Rarefaction Data			
ΤΡΙCΗΟΡΤΕΡΑ ΤΑΧΑ COU		0.4	וויטויטאניים דמאמ טטעווייטמטעומוכע טוו ואמולומטווטוו שמומ			
TROUGHERA_TAAA_COU	Number 8.4 Trichontera Tava Count evoluting Hydronsuchidae					
TRICHOPTERA TAXA COUL	NT NO R	0.1	monophora rana obarn onorading rijaropojonidao			
	Number	8.4	Trichoptera Taxa Count excluding Hydropsychidae-calculated on Rarefaction Data			
		J	The search of th			

APPENDIX B – BIOLOGICAL DATA DICTIONARY

June 2012

This appendix contains the data dictionary of terms used in defining data fields in the CIMS/CDE biological databases. Its purpose is to provide consistency within the CIMS/CDE databases by making data submittal and retrieval compatible among institutions that participate in the program. This dictionary will be expanded as new parameter and field names are required. Institutions submitting data to the CBP monitoring database should use these variable names whenever possible so that names and units of measure are consistent within the CBP monitoring database. Some of the terms in previous versions of this dictionary have changed as the Chesapeake Bay Program Data Center implemented data dictionary consolidation among monitoring programs.

Each entry in this appendix lists the dictionary term name, a brief term description, and whether a term is an attribute or value in as attribute field, a data type and field length.

ACCOUNTING_UNIT	USGS Six-Digit Hydrologic Units Code- Name changed to Basin Unit in 2000	Toyt	6
		TEXL	0
ACCOUNTING_UNIT_	USCS Six Digit Hydrologic Unit Code Description Name changed to Basin Unit in 20	00	
	See Appendix C Table 13 for Details	Text	40
ADDRESS	Physical Mailing Address of Contact Field	Text	50
AFPENETR	Actual or Estimated Gear Penetration Denth Indicator Field	Text	2
AGENCY CODE	State or Eederal Agency Responsible for a Monitoring Program Field	Text	7
AGENCY PROGRAM	NAME	1 OAC	·
	State or Federal Agency Monitoring Program Name	Text	50
ASMRATIO	Production Efficiency Ratio (ug-C/ug-chl A)	Numeric	8.2
BASIN	USGS Six-Diait Hydrologic Units Code Field	Text	6
BASIN DESCRIPTION	Basin Described By the Six Digit USGS HUC Code Field	Text	80
BIO METHOD	CBP Non-Tidal Benthic Biological Enumeration Method CodeValue	Text	6
BIO METHOD DESCR	RIPTION		
	Description of Non-Tidal Benthic Biological Enumeration MethodValue	Text	100
BIO METHOD DETAIL	LS		
	Detailed Description of Non-Tidal Benthic Biological Enumeration Protocol Value	Text	MEMO
BIO_METHOD_TITLE	CBP Non-Tidal Benthic Biological Enumeration Method Title	Text	100
BIO_PARAMETER_DE	SCRIPTION		
	CBP Description of Biological Reporting ParameterValue	Text	100
BIO_REPORTING_PA	RAMETER		
	CBP Biological Reporting ParameterValue	Text	15
BIO_REPORTING_UN	ITS		
	CBP Biological Reporting Parameter UnitsValue	Text	15
BOUNDING_LATITUD	E_NORTH		
	The northern-most coordinate of the limit of coverage expressed in latitude		
	Field	Numeric	8.5
BOUNDING_LATITUD	E_SOUTH		
	The Southern-most coordinate of the limit of coverage expressed in latitude		
		Numeric	8.5
BOUNDING_LATITUD	E_EAST		
	The Eastern-most coordinate of the limit of coverage expressed in longitude	.	
		Numeric	8.5
BOUNDING_LATTUD	E_vvest		
	i ne vvestern-most coordinate of the limit of coverage expressed in longitude	N lu una a vila	0.5
		Numeric	8.5
CALCULATED_UNITS	Calculated Parameter Reporting Units	lext	50
CALCULATED_VALUE	- Calculated Parameter Reporting Value Field	Numeric	8

CATALOGING UNIT USGS Eight-Digit Hydrologic Units C	Code-Name changed to Sub Basin Unit in 2000		
See Appendix C Table 13 for Detail	s Field	Text	8
CATALOGING UNIT DESCRIPTION			
USGS Eight-Digit Hydrologic Units C	Code Descriptor-Name changed to Sub basin Unit	in 2000	
See Appendix C Table 13 for Detail	s Field	Text	40
CARBFIX Carbon Fixation Rate (Percent)	Field	Numeric	8.2
CBP BASIN CBP Monitoring Basin Designation	Field	Text	30
CBP BASIN DESCRIPTION			
CBP Monitoring Basin Description	Field	Text	100
CBP IBI REGION CBP Non-Tidal Benthic IBI Reporting	Region Designation Field	Text	30
CBP IBI REGION DESCRIPTION	, 6 6		
CBP Non-Tidal Benthic IBI Reporting	Region Description Field	Text	100
CB SEG1985 CBP Segment Designation Code (19	985 Scheme) Field	Text	8
CB SEG1985 Description			
CBP Segment Designation Descripti	on (1995 Scheme) Field	Text	50
CB SEG1998 CBP Segment Designation Code (19	998 Scheme)	Text	8
CB SEG1988 Description			-
CBP Segment Designation Descripti	on (1998 Scheme) Field	Text	50
CB SEG2003 CBP Segment Designation Code (20)03 Scheme)	Text	8
CB SEG2003 Description			-
CBP Segment Designation Descripti	on (2003 Scheme) Field	Text	50
CITY City Name		Text	50
COMMENT Comment Field	Field	Memo	_
COMMON NAME Species Common Name	Field	Text	45
CONTACT Monitoring Program Contact	Field	Text	25
CONVFACT Converts Number Per Sample to No	rmalized Count Field	Numeric	8.2
COUNTY NAME County	Field	Text	50
CRUISE Chesapeake Bay Program Cruise Id	entifier Field	Text	6
DATA MANAGER Agency Data Manager	Field	Text	50
DATA MANAGER EMAIL			
Agency Data Manager Email	Field	Text	100
DATA MANAGER PHONE			
Agency Data Manager Telephone N	umber Field	Text	25
DATA TYPE Sampling Date Type Code		Text	2
DATA TYPE DESCRIPTION			
Sampling Date Type Code Description	on Field	Text	2
DIRECTOR Agency Director	Field	Text	50
DIVISION Agency Reporting Division	Field	Text	100

DN_DATE	Lower End of Phytoplankton Index of Biotic Integrity Sample Date Matching Windo	W Date/Time	
ECOREGION_LEVEL_	4	Dute, mile	
ECOREGION LEVEL	EPA Level 4 Ecoregion Code Field 4 NAME	Text	5
	EPA Level 4 Ecoregion Code Description Field	Text	90
ECOREGION_LEVEL_	3		_
ECOREGION LEVEL	EPA Level 3 Ecoregion Code Field	Text	5
	EPA Level 4 Ecoregion Code Description Field	Text	90
EPA METHOD	EPA Analytical Method Field	Text	50
EVENT ID	Database Auto-Indexing Field	Numeric	-
EVENT TYPE	Sampling Event Type Code Field	Text	15
EVENT_TYPE_DESCR	IPTION	10,10	10
	Sampling Event Type Code Description Field	Text	50
FALL_LINE	Above/Below Fall Line Indicator Field	Text	1
FIPS	Federal Information Processing Codes (ZIP CODES) Field	Text	5
G_CONVERSION_FAC	CT Contract of the second s		
	Sampling Gear Conversion Factor (#/SAMPLE TO #/AREA)		
	Field	Text	3
G_CONVERSION_UNI	TS		
	Sampling Gear Code Conversion Factor Units Field	Text	3
G_METHOD	Sampling Gear Code Field	Text	3
G_METHOD_DESCRIF	PTION		
	Sampling Gear Description Field	Text	30
G_METHOD_DETAILS			
	Sampling Gear Description Details Field	Text	50
HAB_METHOD HAB_METHOD_DESCI	Non-Tidal Benthic Habitat Assessment Method Code Field	Text	6
	Non-Tidal Benthic Habitat Assessment Method Description Field	Memo	
HAB_METHOD_DETAI	LS	Momo	
	Non-Tidal Benthic Habitat Assessment Method Description Details Field	Memo	
HAB_METHOD_TITLE HABITAT_REPORTING	Non-Tidal Benthic Habitat Assessment Method Title Field	Text	100
	Non-Tidal Benthic Habitat Assessment Reporting Parameter Field	Text	15
HABITAT_REPORTING	2_PARAMETER_DESCRIPTION	┳	F 0
	Non-Lidal Benthic Habitat Assessment Reporting Parameter Description Field	Text	50
HABITAT TYPE DESC	Non-IIdal Benthic Stream Habitat Characterization Code Field	lext	15
	Non-Tidal Benthic Stream Habitat Characterization Code Description Field	Text	50

HUC 10	USGS 10-Digit Hydrologic Unit Code Field	Text	10
HUC ¹²	USGS 12-Digit Hydrologic Unit Code Field	Text	12
HUC_2	USGS 2-Digit Hydrologic Unit Code Field	Text	2
HUC_4	USGS 4-Digit Hydrologic Unit Code Field	Text	4
HUC_6	USGS 6-Digit Hydrologic Unit Code Field	Text	6
HUC_8	USGS 8-Digit Hydrologic Unit Code Field	Text	8
IBI BOTTOM TYPE	Tidal Benthic Index of Biotic Integrity Bottom Type Field	Text	2
IBI_BOTTOM_TYPE_D	ESCRIPTION		
	Tidal Benthic Index of Biotic Integrity Bottom Type Description Field	Text	10
IBI_LAYER	Phytoplankton Index of Biotic Integrity Layer Code Field	Text	2
IBI_METHOD	Index of Biotic Integrity Method Analytical Method Code Field	Text	10
IBI_METHOD_DESCRI	PTION		
	Index of Biotic Integrity Method Analytical Method Description Field	Memo	
IBI_METHOD_DETAILS	S		
	Index of Biotic Integrity Method Analytical Method Description Details Field	Memo	
IBI_METHOD_TITLE	Index of Biotic Integrity Analytical Method Title Field	Text	100
IBI_PARAMETER	Index of Biotic Integrity Metric Reporting Parameter Field	Text	40
IBI_PARAMETER_DES	SCRIPTION		
	Index of Biotic Integrity Metric Reporting Parameter Description Field	Memo	
IBI_SALZONE	Index of Biotic Integrity Salinity Zone Code Field	Text	2
IBI_SALZONE_DESCR	RIPTION		
	Index of Biotic Integrity Salinity Zone Code Description Field	Text	2
IBI_SCORE	Index of Biotic Integrity Metric Index Score Field	Number	8
IBI_VALUE	Index of Biotic Integrity Metric Reporting Parameter Value Field	Number	8.4
INSTRUMENTS	Analytical Instrument Description Field	Text	10
KARST	USGS Karst Area Designation Code Field	Text	10
KARST_DECSRIPTION	N		
	USGS Area Designation Code Description Field	Text	50
LAB	CBP Analytical Laboratory Code Field	Text	10
LAB_ADDRESS	Analytical Laboratory- Street or Mailing) address Field	Text	100
LAB_DESCRIPTION	CBP Analytical Laboratory Code Description Field	Text	150
LATIN_NAME	Species Latin Name Field	Text	45
LATITUDE	Sampling Site Latitude Field	Numeric	8.5
LAYER	CBP Water Column Sampling Layer Code Field	Text	3
LAYER_DESCRIPTION	J		
	Water Column Sampling Layer Code Description Field	Text	30
LIFE_STAGE	CBP Life Stages Code Field	Text	3
LIFE_STAGE_DESCRI	PTION		
	CBP Life Stages Code Description Field	Text	50
LL_DATUM	CBP Geographic Datum Designation Code Field	Text	8

LL DATUM DESCRIF	PTION			
	CBP Geographic Datum Designation Code Description	Field	Text	50
LONGITUDE	Sampling Site Longitude	Field	Numeric	8.5
METHOD	CBP Tidal Benthic and Plankton Biological Enumeration Method Code	Field	Text	6
METHOD_DESCRIPT	ION			
	CBP Tidal Benthic and Plankton Biological Enumeration Method Descrip	tion		
	- · · · · · · · · · · · · · · · · · · ·	Field	Memo	
METHOD_DETAILS	CBP Tidal Benthic and Plankton Biological Enumeration Method Descrip	tion Details		
-	· · · · · ·	Field	Memo	
METHOD TITLE	CBP Tidal Benthic and Plankton Biological Enumeration Method Title	Field	Text	50
NETMESH	Screen Mesh Width (Millimeters)	Field	Numeric	8.4
NODCCODE	NOAA-NODC Species Code	Field	Text	12
P DEPTH	Composite Sample Cut-Off Depth (Meters)	Field	Numeric	8.1
PARAMETER	Reporting Parameter (Old Name-superseded by Reporting Parameter)	Field	Text	15
PARAMETER DESCH	RIPTION			
	Reporting Parameter Description (Old Name-superseded by Reporting F	Parameter D	escription)	
	· · · · · · · · · · · · · · · · · · ·	Field	Text	100
PENETR	Benthic Sampling Gear Penetration Depth in Centimeter	Field	Numeric	8.1
PENETR VALUE TY	PE			-
	Value Type Flag for Benthic Sampling Gear Penetration Depth	Field	Text	2
PHONE	General Data Provider Contact Phone Number	Field	Text	25
PI EMAIL	Principal Investigator Contact EMAIL	Field	Text	100
PI PHONE	Principal Investigator Contact Phone Number	Field	Text	50
PRINCIPAL INVESTI	GATOR			
	Principal Investigator Name	Field	Text	50
PROBLEM CODE	CBP Analytical Problem Code	Field	Text	2
			i ont	-
PROBLEM CODE DI	ESCRIPTION			
	Description of CBP Analytical Problem Code	Field	Text	100
PROGRAM	Name of Agency or Agency Division Conducting Monitoring	Field	Text	50
PROGRAM CODE	CBP Agency Program Code	Field	Text	6
PROGRAM DESCRIP	PTION		i ont	U
	General Description of Agency or Agency Division Monitoring Program	Field	Text	Memo
PROJECT	CBP Monitoring Project Code	Field	Text	10
PROJECT DESCRIP			TOAT	10
	Agency Monitoring Project Detailed Description	Field	Text	Memo
PRO JECT NAME	Agency Monitoring Project Name	Field	Text	100
	Analytical Detection Limit Qualifier	Field	Text	2
			I GAL	2
	Analytical Detection Limit Qualifier Description	Field	Text	100
			I GAL	100

R DATE	Version Date of Data (MM/DD/YYYY)	Field	Date/Time	8
REFERENCE1	Technical Reference #1 for Analytical Method	Field	Text	Memo
REFERENCE2	Technical Reference #2 for Analytical Method	Field	Text	Memo
REFERENCE3	Technical Reference #3 for Analytical Method	Field	Text	Memo
REFERENCE4	Technical Reference #4 for Analytical Method	Field	Text	Memo
REGION	USGS Two-Digit Hydrologic Units Code	Field	Text	2
REGION_DESCRIPTIC	N S S S S S S S S S S S S S S S S S S S			
_	USGS Two-Digit Hydrologic Unit Code Description	Field	Text	50
REP_TYPE	Sampling Replicate Type	Field	Text	5
REPORTED_VALUE	Superseded See Reporting_Parameter_Value	Field	Numeric	8.4
REPORTING_PARAME	ETER			
	CBP Code for Reporting Parameter Measured	Field	Text	20
REPORTING_PARAME	ETER_DECRIPTION			
	Parameter Measured Description	Field	Text	50
REPORTING_PARAME	ETER_VALUE			
	Reporting Value of Measured Parameter	Field	Numeric	8.4
REPORTING_UNITS	CBP Reporting Units Code for Unit of Measure for Reporting Parameter	Field	Text	25
REPORTING_UNITS_E	DESCRIPTION			
	Description of Reporting Units Code	Field	Text	50
REPORTING_VALUE	Superseded See Reporting_Parameter_Value	Field	Numeric	8.4
REPORTING_VOLTS	Instrument Reporting Voltage Associated with Reporting_Parameter_Value	Field	Numeric	8.4
SALZONE	CBP Code for Venice Salinity Category at Time of Sampling	Field	Text	2
SALZONE_DESCRIPT	ION			
	Description of Venice Salinity Category	Field	Text	50
SALZONE_RANGES	Numeric Range for Venice Salinity in PSU	Field	Text	20
SAMPLE_DATE	Date of Sample Collection (MM/DD/YYYY)	Field	Date/Time	
SAMPLE_DATE_TIME	Combined Date and Time of Sample Collection (MM/DD/YYYY HH:MM:SS)			
		Field	Date/Time	
SAMPLE_DEPTH	Sample Collection Depth in Meters	Field	Numeric	8.1
SAMPLE_NUMBER	Sample Replicate Number	Field	Numeric	8.0
SAMPLE_REPLICATE	_TYPE			
SAMPLE_TIME	Sample Collection Time (HH:MM:SS-24 Hour Time)	Field	Date/Time	8
SAMPLE_TIME_END	End Sample Collection Time (HH:MM:SS-24 Hour Time)-			
	Used when sampling is conducted over time interval	Field	Date/Time	8
SAMPLE_TIME_STAR	T Start Sample Collection Time (HH:MM:SS-24 Hour Time)	Field	Date/Time	8
	Used when sampling is conducted over time interval	Field	Date/Time	8
SAMPLE_TYPE	Sample Collection Type	Field	Text	4
SAMPLE_TYPE_DESC	RIPTION			
	Sample Collection Type Description	Field	Text	4
SAMVOL_L	Total Composite Sample Volume	Field	Numeric	8.2

SEASON SEDIMENT_METHOD SEDIMENT_METHOD	Index of Biotic Integrity- Season Classification CBP Benthic Sediment Analytical Method Code DESCRIPTION	Field Field	Text Text	6 6
	CBP Benthic Sediment Analytical Method Code Description	Field	Text	50
SEDIMENT_METHOD_				
	CBP Benthic Sediment Analytical Method Detailed Description	Field	Memo	
SEDIMENT_METHOD_	_IIILE CPP Ponthic Sodimont Applytical Mathed Title			
SEDIMENIT TVDE	CDF Defilience Sediment Profile Image Analysis Sediment Characterization Type	Field	Toxt	2
SEDIMENT TYPE DE	SCRIPTION	i leiu	TEXL	2
	Benthic Sediment Profile Image Analysis Sediment Characterization Descrip	otion		
	p	Field	Text	50
SER NUM	Data Collection Agency Sample Serial Number	Field	Text	12
SITE LOCATION	Source Agency Site Location Description	Field	Text	225
SITE TYPE CODE	CBP Sampling Site Type Code	Field	Text	5
SITE_TYPE_DESCRIP	TION			
	Formal Description of Sampling Site Type	Field	Text	225
SITE_TYPE_NAME	Name of Sampling Site Type	Field	Text	25
SIZE_RANGE	Organism Size Range	Field	Text	50
SOURCE	CBP Data Source Code	Field	Text	10
SOURCE_DESCRIPTION	NC			
	CBP Data Source Description	Field	Text	100
SOURCE_DETAILS	CBP Data Source Detailed Description	Field	Text	150
SOURCE_G_CODE	Data Generator In-house Sampling Gear Designation Code	Field	Text	10
SPEC_CODE	Data Generator In-house Species Identification Code	Field	Text	15
START_DATE	Start Date of Sampling Effort or Cruise (MM/DD/YYYY)	Field	Date/Time	8
STATE_INITIALS	FIPS State Alpha Code	Filed	Text	2
STATE_NAME	FIPS Formal State Name	Field	Text	50
STATION	Sampling Station Name	Field	Text	Variable
STATION_DESCRIPTION			— ,	
OTATION DETAILO	Sampling Station Description	Field	lext	250
STATION_DETAILS	Detailed Sampling Station Description		lest	Memo
STATION_ID	Sampling Station Identifier	Field	lext	Variable
STORET_CODE	EPA STORET Analytical Parameter Code	Field	Text	5
STORET_STATION		Field	Text	8
SIKARLER_SIKEAM	_URDER Strahlar Straam Ordar basad an USGS NHD 1:100.000 saala Straam Cavar	200		
		aye Eiold	Numeric	1
STRATUM	CPB Tidal Benthic Sampling Stratum Code	Field	Text	6
		0.0	10/10	5

STRATUM DESCRIPT	ION		
—	CPB Tidal Benthic Sampling Stratum Description Field	Text	225
STREET ADDRESS	Physical Mailing Address or Street Contact	Text	100
SUBBASIN	USGS Eight-Digit Hydrologic Units Code Field	Text	8
SUBBASIN DESCRIPT	ION		
—	USGS Eight-Digit Hydrologic Unit Code Description Field	Text	50
SUBECOREGION LEV	EL4		
=	EPA Level 4 Ecoregion Code Field	Text	5
SUBECOREGION LEV	'EL4 NAME		
_	EPA Level 4 Ecoregion Description Field	Text	90
SUBREGION	USGS Two-Digit Hydrologic Units Code Field	Text	2
SUBREGION DESCRI	PTION		
—	USGS Two-Digit Hydrologic Unit Code Description Field	Text	50
SUBWATERSHED	USGS Ten-Digit Hydrologic Units Code Field	Text	10
SUBWATERSHED DE	SCRIPTION		
_	USGS Ten-Digit Hydrologic Unit Code Description Field	Text	50
SURVEY ID	Database Auto-Indexing Field Field	Numeric	-
TOTAL DEPTH	Total Water Depth at Station in Meters (Bottom Depth) Field	Numeric	8.1
TOTAL_SAMPLE_VOL	UME		
	Total Field Sample Volume Field	Numeric	8.2
TOTAL_SAMPLE_VOL	UME_UNITS		
	Reporting Units for Field Sample Volume	Text	25
TS_BASIN	Chesapeake Bay Program Tributary Strategy Basin Designation Field	Text	
TSN	Integrated Taxonomic Information System (ITIS) Taxon Serial Number Field	Text	7
UP_DATE	Upper End of Phytoplankton Index of Biotic Integrity Sample Date Matching Window	V	
—	Field	Date/Time	
USGS_CODE	USGS Analytical Parameter Code Field	Text	50
UTM_X	UTM Zone 18N- X Coordinate Field	Numeric	8
UTM_Y	UTM Zone 18N- Y Coordinate Field	Numeric	8
VALUE_TYPE	Parameter Value Type Code Field	Text	2
VALUE_TYPE_DEFINI	ΓΙΟΝ		
	Parameter Value Type Definition Field	Text	50
VALUE_TYPE_DESCR	IPTION		
	Parameter Value Type Definition Field	Text	50
WATER_BODY	Water body name Field	Text	40
WATERBODY_NAME	Water body name Field	Text	40
WATERSHED_DESCR	IPTION		
—	USGS Ten-Digit Hydrologic Unit Code Description Field	Text	50
WEB_SITE	URL for Web Site Associated with Data Source Field	Text	150

WQ_CATEGORY	Phytoplankton Index of Biotic Integrity Water Quality Category Field	Text	20	
WQ_DATE	Phytoplankton Index of Biotic Integrity Water Quality Sampling Date Field	Date/Time		
WQ_DESCRIPTION	CBP Water Quality Analytical Method Description Field	Memo		
WQ_DETAILS	CBP Water Quality Analytical Method Detailed Description Field	Memo		
WQ_METHOD	CBP Water Quality Analytical Method Code Field	Text	4	
WQ_TITLE	CBP Water Quality Analytical Method Title Field	Text	100	
ZIP	US Postal Service ZIP Code Field	Text	10	

APPENDIX C – LOOK UP AND PARAMETER CODES

June 2012

This appendix contain explanations of the numeric and alphanumeric codes are used in the CIMS/CDE databases and data sets to identify specific sampling gears, analytical methods, collecting agencies, segments, cruise numbers, etc.

Table C-1. Sampling Agency or Source Codes (AGENCY or SOURCE).

The Agency or Source codes were added to the database to identify the entity that generates the monitoring data directly or under contract to a larger organization.

AGENCY OR	AGENCY OR SOURCE NAME
SOURCE	
AAC_DPW	Anne Arundel County-Department of Public Works
BAL_DPW	City of Baltimore-Department of Public Works
BC_DEP	Baltimore County Department of Environmental Protection
DC_DDOE	District of Columbia-District Department of the Environment
DNREC	Delaware Department of Natural Resources and Environmental Control
FC-DPW	Frederick County Department of Public Works
FC-SPS	Fairfax County Department of Public Works and Environmental Services
HC_DPW	Howard County Department of Public Works
LC-DBD	Loudon County Department Of Building And Development
MC-SPS	Montgomery County Department of Environmental Protection
MDDNR	Maryland Department of Natural Resources
MDE	Maryland Department Of The Environment
MSU	Morgan State University
NYDEC	New York Department Of Environmental Conservation
PADEP	Pennsylvania Department of Environmental Protection
PGC-DER	Prince George's County Department of Environmental Resources
SRBC	Susquehanna River Basin Commission
USEPA	United States Environmental Protection Agency
USFS	United States Forest Service
USGS	United States Geological Survey
VADEQ	Virginia Department of Environmental Quality
VCU	Virginia Commonwealth University
VERSAR	Versar Incorporated
VIMS	Virginia Institute Of Marine Science
WVDEP	West Virginia Department of Environmental Protection

Table C-2. Chesapeake Bay Program Cruise Identifier (CRUISE).

This alpha-numeric code identifies the cruise to which the data observation belongs. Cruise identification is useful for grouping data that are collected over a range of sample dates, but that are considered data for a specific sampling period. Bay Cruise numbers are used only in the Tidal Water Quality Monitoring Program Data. The cruise schedule was originally set up to group mainstem monitoring data from Maryland and Virginia into a synoptic view. Cruises were named specifically according to the mainstem samplings. Therefore, cruise number assignments do not work well when applied to tributary or non-tidal program samplings. As of 2008, the 1st-15th dates are the first cruise (A), and the16th-31st are the second (B) regardless of how many cruises or when they occured. The current CBP cruise numbers are as follows:

CRUISE	START_ DATE	END_ DATE
PRECBP	1/1/1960	6/14/1984
BAY001	6/15/1984	6/30/1984
BAY002	7/1/1984	7/15/1984
BAY003	7/16/1984	7/31/1984
BAY004	8/1/1984	8/15/1984
BAY005	8/16/1984	8/31/1984
BAY006	9/1/1984	9/15/1984
BAY007	9/16/1984	9/30/1984

CRUISE	START_ DATE	END_ DATE
BAY008	10/1/1984	10/15/1984
BAY009	10/16/1984	10/31/1984
BAY010	11/1/1984	11/30/1984
BAY011	12/1/1984	12/31/1984
BAY012	1/1/1985	1/31/1985
BAY013	2/1/1985	2/28/1985
BAY014	3/1/1985	3/15/1985
BAY015	3/16/1985	3/31/1985

START_ DATE	END_ DATE
4/1/1985	4/15/1985
4/16/1985	4/30/1985
5/1/1985	5/15/1985
5/16/1985	5/31/1985
6/1/1985	6/15/1985
6/16/1985	6/30/1985
7/1/1985	7/15/1985
7/16/1985	7/31/1985
	START_ DATE 4/1/1985 4/16/1985 5/1/1985 5/16/1985 6/16/1985 7/11/1985 7/16/1985

CRUISE	START_ DATE	END_ DATE
BAY024	8/1/1985	8/15/1985
BAY025	8/16/1985	8/31/1985
BAY026	9/1/1985	9/15/1985
BAY027	9/16/1985	10/2/1985
BAY028	10/3/1985	10/14/1985
BAY029	10/15/1985	11/6/1985
BAY030	11/7/1985	11/30/1985
BAY031	12/1/1985	12/31/1985
BAY032	1/1/1986	1/31/1986
BAY033	2/1/1986	2/28/1986
BAY034	3/1/1986	3/15/1986
BAY035	3/16/1986	3/31/1986
BAY036	4/1/1986	4/15/1986
BAY037	4/16/1986	4/30/1986
BAY038	5/1/1986	5/15/1986
BAY039	5/16/1986	5/31/1986
BAY040	6/1/1986	6/15/1986
BAY041	6/16/1986	6/30/1986
BAY042	7/1/1986	7/15/1986
BAY043	7/16/1986	7/31/1986
BAY044	8/1/1986	8/15/1986
BAY045	8/16/1986	8/31/1986
BAY046	9/1/1986	9/15/1986
BAY047	9/16/1986	9/30/1986
BAY048	10/1/1986	10/15/1986
BAY049	10/16/1986	10/31/1986
BAY050	11/1/1986	11/30/1986
BAY051	12/1/1986	12/31/1986
BAY052	1/1/1987	1/31/1987
BAY053	2/1/1987	2/28/1987
BAY054	3/1/1987	3/15/1987
BAY055	3/16/1987	3/31/1987
BAY056	4/1/1987	4/15/1987
BAY057	4/16/1987	4/30/1987
BAY058	5/1/1987	5/15/1987
BAY059	5/16/1987	5/31/1987
BAY060	6/1/1987	6/15/1987
BAY061	6/16/1987	6/30/1987
BAY062	7/1/1987	7/17/1987
BAY063	7/18/1987	7/31/1987
BAY064	8/1/1987	8/15/1987
BAY065	8/16/1987	8/31/1987
BAY066	9/1/1987	9/15/1987
BAY067	9/16/1987	9/30/1987
BAY068	10/1/1987	10/15/1987
BAY069	10/16/1987	10/31/1987

CRUISE	START_ DATE	END_ DATE
BAY070	11/1/1987	11/30/1987
BAY071	12/1/1987	12/31/1987
BAY072	1/1/1988	1/31/1988
BAY073	2/1/1988	2/28/1988
BAY074	3/1/1988	3/15/1988
BAY075	3/16/1988	3/31/1988
BAY076	4/1/1988	4/15/1988
BAY077	4/16/1988	4/30/1988
BAY078	5/1/1988	5/15/1988
BAY079	5/16/1988	5/31/1988
BAY080	6/1/1988	6/14/1988
BAY081	6/15/1988	6/30/1988
BAY082	7/1/1988	7/15/1988
BAY083	7/16/1988	7/31/1988
BAY084	8/1/1988	8/15/1988
BAY085	8/16/1988	8/31/1988
BAY086	9/1/1988	9/13/1988
BAY087	9/14/1988	9/30/1988
BAY088	10/1/1988	10/15/1988
BAY089	10/16/1988	10/31/1988
BAY090	11/1/1988	11/30/1988
BAY091	12/1/1988	12/31/1988
BAY092	1/1/1989	1/31/1989
BAY093	2/1/1989	2/28/1989
BAY094	3/1/1989	3/15/1989
BAY095	3/10/1989	3/31/1989
	4/1/1989	4/15/1989
	5/1/1000	4/30/1909 5/15/1020
BAT070	5/16/1080	5/31/1080
ΒΔΥ100	6/1/1989	6/15/1989
BAY101	6/16/1989	6/30/1989
BAY102	7/1/1989	7/15/1989
BAY103	7/16/1989	7/31/1989
BAY104	8/1/1989	8/15/1989
BAY105	8/16/1989	8/31/1989
BAY106	9/1/1989	9/15/1989
BAY107	9/16/1989	9/30/1989
BAY108	10/1/1989	10/15/1989
BAY109	10/16/1989	10/31/1989
BAY110	11/1/1989	11/30/1989
BAY111	12/1/1989	12/31/1989
BAY112	1/1/1990	1/31/1990
BAY113	2/1/1990	2/28/1990
BAY114	3/1/1990	3/15/1990
BAY115	3/16/1990	3/31/1990

CRUISE	START_ DATE	END_ DATE
BAY116	4/1/1990	4/15/1990
BAY117	4/16/1990	4/30/1990
BAY118	5/1/1990	5/15/1990
BAY119	5/16/1990	5/31/1990
BAY120	6/1/1990	6/15/1990
BAY121	6/16/1990	6/30/1990
BAY122	7/1/1990	7/15/1990
BAY123	7/16/1990	7/31/1990
BAY124	8/1/1990	8/15/1990
BAY125	8/16/1990	8/31/1990
BAY126	9/1/1990	9/15/1990
BAY127	9/16/1990	9/30/1990
BAY128	10/1/1990	10/15/1990
BAY129	10/16/1990	10/31/1990
BAY130	11/1/1990	11/30/1990
BAY131	12/1/1990	12/31/1990
BAY132	1/1/1991	1/31/1991
BAY133	2/1/1991	2/28/1991
BAY134	3/1/1991	3/15/1991
BAY135	3/16/1991	3/31/1991
BAY136	4/1/1991	4/15/1991
BAY137	4/16/1991	4/30/1991
BAY138	5/1/1991	5/15/1991
BAY139	5/16/1991	5/31/1991
BAY140	6/1/1991	6/15/1991
BAY141	6/16/1991	6/30/1991
BAY142	7/1/1991	7/15/1991
BAY143	7/16/1991	7/31/1991
BAY144	8/1/1991	8/15/1991
BAY145	8/16/1991	8/31/1991
BAY146	9/1/1991	9/15/1991
BAY147	9/16/1991	9/30/1991
BAY148	10/1/1991	10/15/1991
BAY149	10/16/1991	10/31/1991
BAY150	11/1/1991	11/30/1991
BAY151	12/1/1991	12/31/1991
BAY152	1/1/1992	1/31/1992
BAY153	2/1/1992	2/28/1992
BAY154	3/1/1992	3/15/1992
BAY155	3/16/1992	3/31/1992
BAY156	4/1/1992	4/15/1992
BAY157	4/16/1992	4/30/1992
BAY158	5/1/1992	5/15/1992
BAY159	5/16/1992	5/31/1992
BAY160	6/1/1992	6/15/1992
BAY161	6/16/1992	6/30/1992

CRUISE	START_ DATE	END_ DATE
BAY162	7/1/1992	7/15/1992
BAY163	7/16/1992	7/31/1992
BAY164	8/1/1992	8/15/1992
BAY165	8/16/1992	8/31/1992
BAY166	9/1/1992	9/15/1992
BAY167	9/16/1992	9/30/1992
BAY168	10/1/1992	10/15/1992
BAY169	10/16/1992	10/31/1992
BAY170	11/1/1992	11/30/1992
BAY171	12/1/1992	12/31/1992
BAY172	1/1/1993	1/31/1993
BAY173	2/1/1993	2/28/1993
BAY174	3/1/1993	3/15/1993
BAY175	3/16/1993	3/31/1993
BAY176	4/1/1993	4/15/1993
BAY177	4/16/1993	4/30/1993
BAY178	5/1/1993	5/15/1993
BAY179	5/16/1993	5/31/1993
BAY 180	6/1/1993	6/15/1993
	0/10/1993	0/30/1993
BAY 182	7/1/1993	7/15/1993
DATIOS	0/1/1002	0/15/1002
DAT 104	0/1/1993 9/16/1003	0/10/1993 0/21/1002
BAV186	0/10/1993	0/15/1002
BAT100 ΒΔV187	9/16/1993	9/13/1993
BAV188	10/1/1003	10/15/1993
BAY189	10/16/1993	10/31/1993
BAY190	11/1/1993	11/30/1993
BAY191	12/1/1993	12/31/1993
BAY192	1/1/1994	1/31/1994
BAY193	2/1/1994	2/28/1994
BAY194	3/1/1994	3/15/1994
BAY195	3/16/1994	3/31/1994
BAY196	4/1/1994	4/15/1994
BAY197	4/16/1994	4/30/1994
BAY198	5/1/1994	5/15/1994
BAY199	5/16/1994	5/31/1994
BAY200	6/1/1994	6/15/1994
BAY201	6/16/1994	6/30/1994
BAY202	7/1/1994	7/15/1994
BAY203	7/16/1994	7/31/1994
BAY204	8/1/1994	8/15/1994
BAY205	8/16/1994	8/31/1994
BAY206	9/1/1994	9/15/1994
BAY207	9/16/1994	9/30/1994

CRUISE	START_ DATE	END_ DATE
BAY208	10/1/1994	10/15/1994
BAY209	10/16/1994	10/31/1994
BAY210	11/1/1994	11/30/1994
BAY211	12/1/1994	12/31/1994
BAY212	1/1/1995	1/31/1995
BAY213	2/1/1995	2/28/1995
BAY214	3/1/1995	3/15/1995
BAY215	3/16/1995	3/31/1995
BAY216	4/1/1995	4/15/1995
BAY217	4/16/1995	4/30/1995
BAY218	5/1/1995	5/15/1995
BAY219	5/16/1995	5/31/1995
BAY220	6/1/1995	6/15/1995
BAY221	6/16/1995	6/30/1995
BAY222	7/1/1995	7/15/1995
BAY223	7/16/1995	7/31/1995
BAY224	8/1/1995	8/15/1995
BAY225	8/16/1995	8/31/1995
BAY226	9/1/1995	9/15/1995
BAY227	9/16/1995	9/30/1995
BAY228	10/1/1995	10/15/1995
BAY229	10/10/1995	10/31/1995
DAY230	1 1/1/1993	11/30/1993
BAT231	1/1/1006	1/31/1006
BAY232	2/1/1996	2/29/1996
BAY234	3/1/1996	3/15/1996
BAY235	3/16/1996	3/31/1996
BAY236	4/1/1996	4/15/1996
BAY237	4/16/1996	4/30/1996
BAY238	5/1/1996	5/15/1996
BAY239	5/16/1996	5/31/1996
BAY240	6/1/1996	6/15/1996
BAY241	6/16/1996	6/30/1996
BAY242	7/1/1996	7/15/1996
BAY243	7/16/1996	7/31/1996
BAY244	8/1/1996	8/15/1996
BAY245	8/16/1996	8/31/1996
BAY246	9/1/1996	9/15/1996
BAY247	9/16/1996	9/30/1996
BAY248	10/1/1996	10/15/1996
	10/16/1996	10/31/1996
DAI200	11/1/1996	11/30/1996
DAT201	1/1/1990	1/21/1007
DA 1202	2/1/1007	2/28/1007
DA1200	2/1/1997	2120/1997

CRUISE	START_ DATE	END_ DATE
BAY254	3/1/1997	3/15/1997
BAY255	3/16/1997	3/31/1997
BAY256	4/1/1997	4/13/1997
BAY257	4/14/1997	4/30/1997
BAY258	5/1/1997	5/15/1997
BAY259	5/16/1997	5/31/1997
BAY260	6/1/1997	6/15/1997
BAY261	6/16/1997	6/30/1997
BAY262	7/1/1997	7/17/1997
BAY263	7/18/1997	7/31/1997
BAY264	8/1/1997	8/15/1997
BAY265	8/16/1997	8/31/1997
BAY266	9/1/1997	9/15/1997
BAY267	9/16/1997	9/30/1997
BAY268	10/1/1997	10/17/1997
BAY269	10/18/1997	10/31/1997
BAY270	11/1/1997	11/30/1997
BAY271	12/1/1997	12/31/1997
BAY272	1/1/1998	1/31/1998
BAY273	2/1/1998	2/28/1998
BAY274	3/1/1998	3/15/1998
BAY275	3/16/1998	3/31/1998
BAY276	4/1/1998	4/15/1998
BAY277	4/16/1998	4/30/1998
BAY278	5/1/1998	5/15/1998
BAY279	5/16/1998	5/31/1998
BAY280	6/1/1998	6/14/1998
BAY281	6/15/1998	6/30/1998
BAY282	// 1/ 1998	7/15/1998
BAY283	//10/1998	//31/1998
	8/1/1998	8/15/1998
DA1200 RAV204	0/10/1998	0/31/1998
DATZ00 RAV207	0/11/1998	9/10/1000
DATZO/ RAV200	7/14/1998 10/1/1000	9/30/1998 10/15/1000
DA 1200	10/1/1998	10/13/1998
BA1209	11/1/1000	11/30/1009
RAV201	12/1/1000	12/31/1009
BAY202	1/1/1000	1/31/1000
BAY202	2/1/1000	2/28/1000
BAY294	3/1/1999	3/14/1999
BAY295	3/15/1999	3/31/1000
BAY296	4/1/1999	4/15/1999
BAY297	4/16/1999	4/30/1999
BAY298	5/1/1999	5/15/1999
BAY299	5/16/1999	5/31/1999

CDUICE	START_	END_
CRUISE	DATE	DATE
BAY300	6/1/1999	6/13/1999
BAY301	6/14/1999	6/30/1999
BAY302	7/1/1999	7/16/1999
BAY303	7/17/1999	7/31/1999
BAY304	8/1/1999	8/15/1999
BAY305	8/16/1999	8/30/1999
BAY306	9/1/1999	9/15/1999
BAY307	9/15/1999	9/30/1999
BAY308	10/1/1999	10/15/1999
BAY309	10/16/1999	10/31/1999
BAY310	11/1/1999	11/30/1999
BAY311	12/1/1999	12/31/1999
BAY312	1/1/2000	1/31/2000
BAY313	2/1/2000	2/29/2000
BAY314	3/1/2000	3/15/2000
BAY315	3/16/2000	3/31/2000
BAY316	4/1/2000	4/15/2000
BAY317	4/16/2000	4/30/2000
BAY318	5/1/2000	5/15/2000
BAY319	5/16/2000	5/31/2000
BAY320	6/1/2000	6/15/2000
BAY321	6/16/2000	6/30/2000
BAY322	7/1/2000	7/15/2000
BAY323	7/16/2000	7/31/2000
BAY324	8/1/2000	8/15/2000
BAY325	8/16/2000	8/30/2000
BAY326	9/1/2000	9/15/2000
BAY327	9/16/2000	9/30/2000
BAY328	10/1/2000	10/15/2000
BAY329	10/16/2000	10/31/2000
BAY330	11/1/2000	11/30/2000
BAY331	12/1/2000	12/31/2000
BAY332	1/1/2001	1/31/2001
BAY333	2/1/2001	2/28/2001
BAY334	3/1/2001	3/15/2001
BAY335	3/16/2001	3/31/2001
BAY336	4/1/2001	4/15/2001
BAY337	4/16/2001	4/30/2001
BAY338	5/1/2001	5/15/2001
BAY339	5/16/2001	5/31/2001
BAY340	6/1/2001	6/15/2001
BAY341	6/16/2001	6/30/2001
BAY342	7/1/2001	7/15/2001
BAY343	7/16/2001	7/31/2001
BAY344	8/1/2001	8/16/2001
BAY345	8/17/2001	8/31/2001

CRUISE	START_ DATE	END_ DATE
BAY346	9/1/2001	9/15/2001
BAY347	9/16/2001	9/30/2001
BAY348	10/1/2001	10/18/2001
BAY349	10/19/2001	10/31/2001
BAY350	11/1/2001	11/30/2001
BAY351	12/1/2001	12/31/2001
BAY352	1/8/2002	1/31/2002
BAY353	2/1/2002	2/28/2002
BAY354	3/1/2002	3/15/2002
BAY355	3/16/2002	3/31/2002
BAY356	4/1/2002	4/15/2002
BAY357	4/16/2002	4/30/2002
BAY358	5/1/2002	5/15/2002
BAY359	5/16/2002	5/31/2002
BAY360	6/1/2002	6/15/2002
BAY361	6/16/2002	6/30/2002
BAY362	7/1/2002	7/15/2002
BAY363	7/16/2002	7/31/2002
BAY364	8/1/2002	8/15/2002
BAY365	8/16/2002	8/31/2002
BAY366	9/1/2002	9/15/2002
BAY367	9/16/2002	9/30/2002
BAY368	10/1/2002	10/15/2002
BAY369	10/16/2002	10/31/2002
BAY370	11/1/2002	11/30/2002
BAY371	12/1/2002	12/31/2002
BAY372	1/1/2003	1/31/2003
BAY373	2/1/2003	2/28/2003
BAY374	3/1/2003	3/15/2003
BAY375	3/16/2003	3/31/2003
BAY376	4/1/2003	4/15/2003
BAY377	4/16/2003	4/30/2003
BAY378	5/1/2003	5/15/2003
DAY3/9	5/10/2003	5/31/2003
	0/1/2003	6/15/2003
σαιγγου σαγγου	0/10/2003	0/30/2003
BAY382	7/1/2003	7/15/2003
DA1303 DAV201	0/1/2003	0/15/2002
DA1304	0/1/2003	0/10/2003
DA1303	0/10/2003	0/31/2003
DA1300	9/1/2003	9/10/2003
DA 1 307	9/10/2003	9/30/2003
DA1200	10/16/2003	10/13/2003
DA1309	11/1/2003	10/31/2003
DA 1 390	11/1/2003	11/30/2003
da i 391	12/1/2003	12/31/2003

CRUISE	START_ DATE	END_ DATE
BAY392	1/6/2004	1/30/2004
BAY393	2/1/2004	2/29/2004
BAY394	3/1/2004	3/30/2004
BAY396	4/1/2004	4/15/2004
BAY397	4/16/2004	4/30/2004
BAY398	5/1/2004	5/15/2004
BAY399	5/16/2004	5/31/2004
BAY400	6/1/2004	6/15/2004
BAY401	6/16/2004	6/30/2004
BAY402	7/1/2004	7/14/2004
BAY403	7/15/2004	7/31/2004
BAY404	8/1/2004	8/15/2004
BAY405	8/16/2004	8/31/2004
BAY406	9/1/2004	9/15/2004
BAY407	9/16/2004	9/30/2004
BAY408	10/1/2004	10/15/2004
BAY409	10/16/2004	10/31/2004
BAY410	11/1/2004	11/30/2004
BAY411	12/1/2004	12/31/2004
BAY412	1/5/2005	1/31/2005
BAY413	2/1/2005	2/28/2005
BAY414	3/1/2005	3/17/2005
BAY415	3/18/2005	3/31/2005
BAY416	4/1/2005	4/15/2005
BAY417	4/16/2005	4/30/2005
BAY418	5/1/2005	5/15/2005
BAY419	5/16/2005	5/31/2005
BAY420	6/1/2005	6/15/2005
BAY421	6/16/2005	6/30/2005
BAY422	7/1/2005	7/15/2005
BAY423	7/16/2005	7/31/2005
BAY424	8/1/2005	8/15/2005
BAY425	8/16/2005	8/31/2005
BAY426	9/1/2005	9/15/2005
BAY427	9/16/2005	9/30/2005
BAY428	10/1/2005	10/15/2005
BAY429	10/16/2005	10/31/2005
BAY430	11/1/2005	11/30/2005
BAY431	12/1/2005	12/31/2005
BAY432	1/1/2006	1/31/2006
BAY433	2/1/2006	2/28/2006
BAY434	3/1/2006	3/15/2006
BAY435	3/16/2006	3/31/2006
BAY436	4/1/2006	4/15/2006
BAY437	4/16/2006	4/30/2006
BAY438	5/1/2006	5/15/2006

CRUISE	START_ DATE	END_ DATE
BAY439	5/16/2006	5/31/2006
BAY440	6/1/2006	6/15/2006
BAY441	6/16/2006	6/30/2006
BAY442	7/1/2006	7/15/2006
BAY443	7/16/2006	7/31/2006
BAY444	8/1/2006	8/17/2006
BAY445	8/18/2006	8/31/2006
BAY446	9/1/2006	9/15/2006
BAY447	9/16/2006	9/30/2006
BAY448	10/1/2006	10/15/2006
BAY449	10/16/2006	10/31/2006
BAY450	11/1/2006	11/30/2006
BAY451	12/1/2006	12/31/2006
BAY452	1/3/2007	1/31/2007
BAY453	2/1/2007	2/28/2007
BAY454	3/1/2007	3/15/2007
BAY455	3/16/2007	3/30/2007
BAY456	4/1/2007	4/15/2007
BAY457	4/16/2007	4/30/2007
BAY458	5/1/2007	5/15/2007
BAY459	5/16/2007	5/31/2007
BAY460	6/1/2007	6/15/2007
BAY461	6/16/2007	6/30/2007
BAY462	7/1/2007	7/15/2007
BAY463	7/16/2007	7/31/2007
BAY464	8/1/2007	8/15/2007
BAY465	8/16/2007	8/31/2007
BAY466	9/1/2007	9/15/2007
BAY467	9/16/2007	9/30/2007
BAY468	10/1/2007	10/15/2007
BAY469	10/16/2007	10/31/2007
BAY470	11/1/2007	11/30/2007
BAY471	12/1/2007	12/31/2007
BAY472	1/1/2008	1/15/2008
BAY473	1/16/2008	1/31/2008
BAY474	2/1/2008	2/15/2008
BAY475	2/16/2008	2/29/2008
BAY476	3/1/2008	3/15/2008
BAY477	3/16/2008	3/31/2008
BAY478	4/1/2008	4/16/2008
BAY479	4/17/2008	4/30/2008
BAY480	5/1/2008	5/15/2008
BAY481	5/16/2008	5/31/2008
BAY482	6/1/2008	6/15/2008
BAY483	6/16/2008	6/30/2008
BAY484	7/1/2008	7/15/2008

CRUISE	START_ DATE	END_ DATE
BAY485	7/16/2008	7/31/2008
BAY486	8/1/2008	8/15/2008
BAY487	8/16/2008	8/31/2008
BAY488	9/1/2008	9/14/2008
BAY489	9/15/2008	9/30/2008
BAY490	10/1/2008	10/15/2008
BAY491	10/16/2008	10/31/2008
BAY492	11/1/2008	11/15/2008
BAY493	11/16/2008	11/30/2008
BAY494	12/1/2008	12/15/2008
BAY495	12/16/2008	12/31/2008
BAY496	1/1/2009	1/15/2009
BAY497	1/16/2009	1/31/2009
BAY498	2/1/2009	2/15/2009
BAY499	2/16/2009	2/28/2009
BAY500	3/1/2009	3/15/2009
BAY501	3/16/2009	3/31/2009
BAY502	4/1/2009	4/15/2009
BAY503	4/16/2009	4/30/2009
BAY504	5/1/2009	5/15/2009
BAY505	5/16/2009	5/31/2009
BAY506	6/1/2009	6/15/2009
BAY507	6/16/2009	6/30/2009
BAY508	7/1/2009	1/15/2009
BAY509	7/16/2009	7/30/2009
BAY510	8/1/2009	8/15/2009
BAY511	8/16/2009	8/31/2009
BAY512	9/1/2009	9/15/2009
BAY513	9/16/2009	9/30/2009
BAY514	10/1/2009	10/15/2009
BAY515	10/16/2009	10/31/2009
BAY516	11/1/2009	11/15/2009
BAY517	11/16/2009	11/30/2009
BAY518	12/1/2009	12/15/2009
BAY519	12/16/2009	12/31/2009
BAY520	1/1/2010	1/15/2010
BAY521	1/16/2010	1/31/2010
BAY522	2/1/2010	2/15/2010
BAY523	2/16/2010	2/28/2010
BAY524	3/1/2010	3/15/2010
BAY525	3/16/2010	3/31/2010
BAY526	4/1/2010	4/15/2010
BAY527	4/16/2010	4/30/2010
BAY528	5/1/2010	5/15/2010
BAY529	5/16/2010	5/31/2010
BAY530	6/1/2010	6/15/2010

CRUISE	START_ DATE	END_ DATE
BAY531	6/16/2010	6/30/2010
BAY532	7/1/2010	7/15/2010
BAY533	7/16/2010	7/30/2010
BAY534	8/1/2010	8/15/2010
BAY535	8/16/2010	8/31/2010
BAY536	9/1/2010	9/15/2010
BAY537	9/16/2010	9/30/2010
BAY538	10/1/2010	10/15/2010
BAY539	10/16/2010	10/31/2010
BAY540	11/1/2010	11/15/2010
BAY541	11/16/2010	11/30/2010
BAY542	12/1/2010	12/15/2010
BAY543	12/16/2010	12/31/2010
BAY544	1/1/2011	1/15/2011
BAY545	1/16/2011	1/31/2011
BAY546	2/1/2011	2/15/2011
BAY547	2/16/2011	2/28/2011
BAY548	3/1/2011	3/15/2011
BAY549	3/16/2011	3/31/2011
BAY550	4/1/2011	4/15/2011
BAY551	4/16/2011	4/30/2011
BAY552	5/1/2011	5/15/2011
BAY553	5/16/2011	5/31/2011
BAY554	6/1/2011	6/15/2011
BAY555	6/16/2011	6/30/2011
BAY556	7/1/2011	7/15/2011
BAY557	7/16/2011	7/31/2011
BAY558	8/1/2011	8/15/2011
BAY559	8/16/2011	8/31/2011
BAY560	9/1/2011	9/15/2011
BAY561	9/16/2011	9/30/2011
BAY562	10/1/2011	10/15/2011
BAY563	10/16/2011	10/31/2011
BAY564	11/1/2011	11/15/2011
BAY565	11/16/2011	11/30/2011
BAY566	12/1/2011	12/15/2011
BAY567	12/16/2011	12/31/2011
BAY568	1/1/2012	1/15/2012
BAY569	1/16/2012	1/31/2012
BAY570	2/1/2012	2/15/2012
BAY571	2/16/2012	2/29/2012
BAY572	3/1/2012	3/15/2012
BAY573	3/16/2012	3/31/2012
BAY574	4/1/2012	4/15/2012
BAY575	4/16/2012	4/30/2012
BAY576	5/1/2012	5/15/2012

ε	START_ DATE	END_ DATE
Y577	5/16/2012	5/31/2012
BAY578	6/1/2012	6/15/2012
3AY579	6/16/2012	6/30/2012
3AY580	7/1/2012	7/15/2012
BAY581	7/16/2012	7/31/2012

Table C-3. Chesapeake Bay Program Basin Designation (CBP_BASIN).

As part of geographic referencing of sampling sites for cross-program data analysis, stations have been assigned CBP basin designations. Designations are as follows:

CBP_BASIN	DESCRIPTION
CHESAPEAKE BAY	CHESAPEAKE BAY
JAMES RIVER	JAMES RIVER WATERSHED
MD EASTERN SHORE	MARYLAND EAST OF CHESAPEAKE BAY
MD WESTERN SHORE	MARYLAND WEST OF CHAESAPEAKE BAY, EXCLUDING THE POTOMAC AND PATUXENT
	WATERSHEDS
PATUXENT RIVER	PATUXENT RIVER WATERSHED
POTOMAC RIVER	POTOMAC RIVER WATERSHED
RAPPAHANNOCK RIVER	RAPPAHANNOCK RIVER WATERSHED
SUSQUEHANNA RIVER	SUSQUEHANNA RIVER WATERSHED
VA EASTERN SHORE	VIRGINIA EAST OF CHESAPEAKE BAY
VA WESTERN SHORE	VIRGINIA WEST OF CHESAPEAKE BAY, EXCLUDING THE POTOMAC, JAMES,
	RAPPAHANNOCK AND YORK WATERSHEDS
YORK RIVER	YORK RIVER WATERSHED

Table C-4. ITIS Taxon Serial Numbers (TSN) and NOAA Species Code (NODCCODE)

CIMS/CDE databases use the Interagency Taxonomic Identification System (ITIS) Taxon Serial Numbers (TSN) for species identification within the database. For species with no TSN values, temporary Chesapeake Bay TSN is generated until a species can be submitted to ITIS for recognition. The use of the standardized TSN codes among all Bay Program databases will allows for queries by species from multiple state and national biological databases.

TSN: Each species has been given its ITIS TSN. The ITIS is a partnership of federal agencies working to improve the organization of, and access to, standardized nomenclature. As part of this system a national, easily accessible database with reliable information on species names and their hierarchical classification has been established. The database is reviewed periodically to ensure high quality with valid classifications, revisions and additions of newly described species. As part of this effort all Federal agencies have been asked to adopt the use of TSN codes which assign each recognized species a permanent number. The TSN allows a species to be tracked over time regardless of changes in name and taxonomic classification. TSN also provides a uniform key field for database development and species identification across multiple organizations. When used in conjunction with the NODC, the TSN overcomes the problem of numeric changes in the NODC code whenever species are reclassified.

Temporary codes are assigned to taxa that are recognized in the scientific literature but have not been assigned an NODC code and a TSN. The value BAYXXXX has been assigned to all taxa without TSN. A temporary NODC code is developed for each unassigned taxon based on its known taxonomy and its species name. For example, the beginning couplets of the NODC code which reflect the known phylogeny of an unassigned taxon are combined with letters from its species name to form a temporary code.

NODC CODE: All species on the list have been assigned at least partial National Oceanographic Data Center (NODC) Taxon Codes (Version 8.0). The NODC Taxon Code is a hierarchical system of numerical codes used to represent the scientific names and phylogeny of organisms. The code links the Linnaean system of biological nomenclature to a numerical schema that facilitates modern methods of computerized data storage and retrieval. The NODC code was that a code that changed over time to reflect current changes in taxonomic classifications. An NODC code contains a maximum of 12 digits partitioned into two-digit couplets. Each couplet represents one or more levels of the taxonomic hierarchy. For example,

Digit Represents

- 1-2 Phylum
- 3-4 Class and/or Order
- 5-6 Family
- 7-8 Genus
- 9-10 Species
- 11-12 Subspecies

In 1996, NODC released the final version (#8) of the NODC Taxonomic Code. Version 8 provided the old NODC codes along with their new ITIS Taxonomic Serial Numbers to facilitate the transition to a new Integrated Taxonomic Information System (ITIS). From that point in time, the NODC code was frozen and ITIS assumed responsibility for assigning new TSN codes, and verifying accepted scientific names and synonyms. However, it still provides data analysts with a very useful tool for sorting organisms into taxonomic groups.

Please see the current taxonomic database on www.chesapeakebay.net or the document a *Comprehensive List of Chesapeake Bay Basin Species, 2007* for a full listing.

Table C-5. 1985 Chesapeake Bay Program Segment Scheme (CB_SEG85).

The original Chesapeake Bay Segmentation Scheme, published in the appendices of Chesapeake Bay: A Profile of Environmental Change was developed in the late 1970s and early 1980s. This initial segmentation scheme formed the spatial aggregation scheme for station network design of the baywide water quality and biological monitoring programs that were initiated in the mid-1980s. The 1983–1985 scheme was based primarily on salinity, circulation and natural features, and secondarily on biological factors and management objectives. The salinity data record on which the scheme was based extends to the late 1940s, but for many parts of the Chesapeake Bay, the data were at best patchy in time and space.

The currently accepted CB_SEG85 values and descriptions are as follows:

- CBSEG85 SEGMENT DESCRIPTION
- AFL NON-TIDAL AREAS OF THE CHESAPEAKE BAY WATERSHED
- CB1 SUSQUEHANNA FLATS
- CB2 UPPER PORTION OF THE CHESAPEAKE BAY MAINSTEM
- CB3 UPPER-MOST ESTUARINE ZONE IN THE CHESAPEAKE BAY MAINSTEM
- CB4 UPPER PORTION OF THE CENTRAL CHESAPEAKE BAY MAINSTEM
- CB5 CENTRAL PORTION OF THE CHESAPEAKE BAY MAINSTEM
- CB6 LOWER WEST-CENTRAL PORTION OF THE CHESAPEAKE BAY MAINSTEM
- CB7 LOWER EAST-CENTRAL PORTION OF THE CHESAPEAKE BAY MAINSTEM
- CB8 SOUTHERN-MOST PORTION OF THE CHESAPEAKE BAY MAINSTEM
- EE1 EASTERN BAY, MILES RIVER, AND WYE RIVER
- EE2 CHOPTANK RIVER WEST OF CASTLE HAVEN, INCLUDING THE TRED AVON RIVER, BROAD CREEK, HARRIS CREEK, AND THE LITTLE CHOPTANK RIVER
- EE3 TANGIER AND POCOMOKE SOUNDS
- ET1 NORTHEAST RIVER
- ET2 ELK AND BOHEMIA RIVERS

CBSEG85	SEGMENT DESCRIPTION
ET3	SASSAFRAS RIVER
ET4	CHESTER RIVER
ET5	CHOPTANK RIVER, EXCLUDING EE2
ET6	NANTICOKE RIVER
ET7	WICOMICO RIVER
ET8	MANOKIN RIVER
ET9	BIG ANNEMESSEX RIVER
ET10	POCOMOKE RIVER
LE1	PATUXENT RIVER, LOWER ESTUARINE SEGMENT
LE2	POTOMAC RIVER, LOWER ESTUARINE SEGMENT
LE3	RAPPAHANNOCK RIVER, LOWER ESTUARINE SEGMENT
LE4	YORK RIVER, LOWER ESTUARINE SEGMENT
LE5	JAMES RIVER, LOWER ESTUARINE SEGMENT
RET1	PATUXENT RIVER, RIVERINE-ESTUARINE TRANSITION ZONE
RET2	POTOMAC RIVER, RIVERINE-ESTUARINE TRANSITION ZONE
RET3	RAPPAHANNOCK RIVER, RIVERINE-ESTUARINE TRANSITION ZONE
RET4	YORK RIVER, RIVERINE-ESTUARINE TRANSITION ZONE
RET5	JAMES RIVER, RIVERINE-ESTUARINE TRANSITION ZONE
TF1	PATUXENT RIVER, TIDAL FRESHWATER SEGMENT
TF2	POTOMAC RIVER, TIDAL FRESHWATER SEGMENT
TF3	RAPPAHANNOCK RIVER, TIDAL FRESHWATER SEGMENT
TF4	YORK RIVER, TIDAL FRESHWATER SEGMENT
TF5	JAMES RIVER, TIDAL FRESHWATER SEGMENT
WE4	MOBJACK BAY
WT1	BUSH RIVER
WT2	GUNPOWDER RIVER
WT3	MIDDLE RIVER AND SENECA CREEK
WT4	BACK RIVER
WT5	PATAPSCO RIVER
WT6	MAGOTHY RIVER
WT7	SEVERN RIVER
WT8	SOUTH, RHODE AND WEST RIVERS

Table C-6. The 2003 Chesapeake Bay Program Segment Designation (CB_SEG2003).

Due to the limitations of the original 1985 segmentation scheme (CB_SEG85), it was revised as part of the 1997 Nutrient Reevaluation in 1997. The new segmentation systems based on an additional 10 plus years of data was designed better representation of biological habitat conditions. An interim segmentation scheme was released in 2007 and finalized in 2008. Later, technical errors were found and the segment scheme received revisions in 2003. Segment names did not differ from 2007 & 2008 versions however segment boundaries were modified. Please see the document a *Chesapeake Bay Program Analytical Segmentation Scheme: Revisions, Decisions and Rationales1983-2003* for complete details. A current segment map can be found at

http://www.chesapeakebay.net/maps/map/chesapeake bay 2003 segmentation scheme codes

The currently accepted CB_SEG2003 values and descriptions are as follows:

Segment	Description	Segment	Description
ANATE	Anacostia River	MANMH	Manokin River
APPTF	Appomattox River	MATTF	Mattawoman Creek
BACOH	Back River	MIDOH	Middle River
BIGMH	Big Annemessex River	MOBPH	Mobjack Bay
BOHOH	Bohemia River	MPNOH	Lower Mattaponi River
BSHOH	Bush River	MPNTF	Upper Mattaponi River
C&DOH	C&D Canal	NANMH	Lower Nanticoke River
CB1TF	Northern Chesapeake Bay	NANOH	Middle Nanticoke River
CB2OH	Upper Chesapeake Bay	NANTF	Upper Nanticoke River
CB3MH	Upper Central Chesapeake Bay	NORTF	Northeast River
CB4MH	Middle Central Chesapeake Bay	PATMH	Patapsco River
CB5MH	Lower Central Chesapeake Bay	PAXMH	Lower Patuxent River
CB6PH	Western Lower Chesapeake Bay	PAXOH	Middle Patuxent River
CB7PH	Eastern Lower Chesapeake Bay	PAXTF	Upper Patuxent River
CB8PH	Mouth of Chesapeake Bay	PIAMH	Piankatank River
СНКОН	Chickahominy River	PISTF	Piscataway Creek
CHOMH1	Lower Choptank River	РМКОН	Lower Pamunkey River
CHOMH2	Mouth of the Choptank River	PMKTF	Upper Pamunkey River
СНООН	Middle Choptank River	POCMH	Lower Pocomoke River
CHOTF	Upper Choptank River	POCOH	Middle Pocomoke River
CHSMH	Lower Chester River	POCTF	Upper Pocomoke River
CHSOH	Middle Chester River	POTMH	Lower Potomac
CHSTF	Upper Chester River	POTOH	Middle Potomac
CRRMH	Corrotoman River	POTTF	Upper Potomac River
EASMH	Eastern Bay	RHDMH	Rhode River
EBEMH	Eastern Branch Elizabeth River	RPPMH	Lower Rappahannock River
ELIPH	Mouth to mid-Elizabeth River	RPPOH	Middle Rappahannock River
Elkoh	Elk River	RPPTF	Upper Rappahannock River
FSBMH	Fishing Bay	SASOH	Sassafras River
GUNOH	Gunpowder River	SBEMH	Southern Branch Elizabeth River
HNGMH	Honga River	SEVMH	Severn River
JMSMH	Lower James River	SOUMH	South River
JMSOH	Middle James River	TANMH	Tangier Sound
JMSPH	Mouth of the James River	WBEMH	Western Branch Elizabeth River
JMSTF	Upper James River	WBRTF	Western Branch Patuxent River
LAFMH	Lafayette River	WICMH	Wicomico River
LCHMH	Little Choptank River	WSTMH	West River
LYNPH	Lynnhaven River	YRKMH	Middle York River
MAGMH	Magothy River	YRKPH	Lower York River

Table C-7 Data Type (DATA_TYPE).

This table stores information related to DATA_TYPE codes in the CBP databases. This table contains information about the type of sample collected during an event. The following list of data types represent those that were either directly measured in the field or analyzed in the laboratory. Additional codes may be added as needed. Currently accepted DATA_TYPE and DESCRIPTION designations are as follows:

DESCRIPTION
TIDAL BENTHIC
FLUORESCENCE
MICROZOOPLANKTON
MESOZOOPLANKTON
NON-TIDAL BENTHIC
PRIMARY PRODUCTION
PHYTOPLANKTON
PICOPLANKTON

Table C-8. Ecological Regions (ECOREGION_LEVEL_4).

This table stores information related to Ecoregion_Level_4 codes in the CBP Non-Tidal Benthic database. The US EPA has established ecoregions as a classification framework to group similar ecosystems into classes with components of relatively homogeneous quality and quantity (Olmernik 2004). Ecoregions are defined by phenomena include geology, physiographic, vegetation, climate, soils, land use, wildlife, and hydrology. Ecoregions were used as a site classification tool in the development of the Chessie BIBI in 2010. More details can be found in Omernik, J. M. (2004). *Perspectives on the Nature and Definition of Ecological Regions*. p. 34 - Supplement 1, pp.27–38. Maps of the current ecoregions in the Chesapeake Bay water shed can be found at http://www.chesapeakebay.net/maps/map/omernik_ecoregions.

Currently recognized EPA Level 4 Ecological Regions and level 3 descriptions are as follows:

Sub	subecoregion_level_4_name	subecoregion_level_3_name
ecoregion_		
level4		
45C	Carolina Slate Belt	Piedmont
45E	Northern Inner Piedmont	Piedmont
45F	Northern Outer Piedmont	Piedmont
45G	Triassic Basins	Piedmont
58H	Reading Prong	Northeastern Highlands
60A	Glaciated Low Plateau	Northern Appalachian Plateau and Uplands
60B	Northeastern Uplands	Northern Appalachian Plateau and Uplands
60D	Finger Lakes Uplands and Gorges	Northern Allegheny Plateau
60E	Glaciated Allegheny Hills	Northern Allegheny Plateau
61B	Mosquito Creek/Pymatuning Lowlands	Erie Drift Plain
61C	Low Lime Drift Plain	Erie Drift Plain
62A	Pocono High Plateau	North Central Appalachians
62B	Low Poconos	North Central Appalachians
62C	Glaciated Allegheney High Plateau	North Central Appalachians
62D	Unglaciated Allegheney High Plateau	North Central Appalachians
62E	Low Catskills	North Central Appalachians
63A	Delaware River Terraces and Uplands	Middle Atlantic Coastal Plain
63B	Chesapeake-Pamlico Lowlands and Tidal Marshes	Middle Atlantic Coastal Plain
63C	Swamps and Peatlands	Middle Atlantic Coastal Plain
63D	Virginian Barrier Islands and Coastal Marshes	Middle Atlantic Coastal Plain
63E	Mid-Atlantic Flatwoods	Middle Atlantic Coastal Plain
63F	Delmarva Uplands	Middle Atlantic Coastal Plain

Sub	subecoregion_level_4_name	subecoregion_level_3_name
ecoregion_		
level4		
64A	Triassic Lowlands	Northern Piedmont
64B	Trap Rock and Conglomerate Uplands	Northern Piedmont
64C	Piedmont Uplands	Northern Piedmont
64D	Piedmont Limestone/Dolomite Lowlands	Northern Piedmont
65M	Rolling Coastal Plain	Southeastern Plains
65N	Chesapeake Rolling Coastal Plain	Southeastern Plains
66A	Northern Igneous Ridges	Blue Ridge
66B	Northern Sedimentary and Metasedimentary Ridges	Blue Ridge
66C	New River Plateau	Blue Ridge
66D	Southern Crystalline Ridges and Mountains	Blue Ridge
66E	Southern Sedimentary Ridges	Blue Ridge
66F	Limestone Valleys and Coves	Blue Ridge
67A	Northern Limestone/Dolomite Valleys	Ridge and Valley
67B	Northern Shale Valleys	Ridge and Valley
67C	Northern Sandstone Ridges	Ridge and Valley
67D	Northern Dissected Ridges and Knobs	Ridge and Valley
67E	Anthracite Subregion	Ridge and Valley
67F	Southern Limestone/Dolomite Valleys and Low Rolling Hills	Ridge and Valley
67G	Southern Shale Valleys	Ridge and Valley
67H	Southern Sandstone Ridges	Ridge and Valley
671	Southern Dissected Ridges and Knobs	Ridge and Valley
69A	Forested Hills and Mountains	Central Appalachians
69B	Uplands and Valleys of Mixed Land Use	Central Appalachians
69C	Greenbriar Karst	Central Appalachians
69D	Dissected Appalachian Plateau	Central Appalachians
69E	Cumberland Mountain Thrust Block	Central Appalachians

Table C-9. Sampling Event Type (EVENT_TYPE).

This table contains information to type of samples collected during tidal and non-tidal benthic sampling events. The following list of data types represent those which either directly measured in the field or analyzed in the laboratory.

EVENT_TYPE	EVENT_TYPE_DESCRIPTION
BEN	Benthic Taxa Assessment Only
BEN\BIOM\SED	Benthic Taxa, Benthic Biomass And Sediment Assessments
BEN\HAB	Benthic Taxa And Habitat Assessment
BEN\SED	Benthic Taxa And Sediment Assessments
BIOM	Benthic Biomass Assessment Only
HAB	Habitat Only
IMG	Sediment Image Analysis
QBEN	Qualitative Benthic Taxa Assessment Only
QBEN\HAB	Qualitative Benthic\Habitat
SED	Sediment Assessment Only
WQ	Water Quality Assessment Only
WQ\BEN	Water Quality And Benthic Taxa Assessment
WQ\BEN\BIOM	Water Quality, Benthic Taxa And Biomass Assessment
WQ\BEN\BIOM\SED	Water Quality, Benthic Taxa, Biomass And Sediment Assessments
WQ\BEN\HAB	Water Quality, Benthic Taxa And Habitat Assessment
WQ\BEN\SED	Water Quality, Benthic taxa And Sediment Analysis
WQ\HAB	Water Quality And Habitat Assessment
WQ\QBEN	Water Quality And Qualitative Benthic Taxa Assessment
WQ\QBEN\HAB	Water Quality, Qualitative Benthic Taxa And Habitat
WQ\SED	Water Quality And Sediment Analysis

Table C-10. Fall Line Designation (FALL_LINE).

Designation of sampling station position relative to fall line. These codes are found in the stations table of the plankton database.

FALL_LINE	DESCRIPTION
A	Above Fall Line or Non-tidal Portion of Tributary
В	Below Fall Line or Tidal Portion of Tributary

Table C-11. FIPS Codes (FIPS).

This table contains Federal Information Processing System (FIPS) codes identifying state and county type of field samples taken at given site. This code is used in the STATIONS tables. Additional codes may be added as needed. Currently accepted FIPS CODE designations are as follows:

FIPS	STATE	NAME	FIPS	STATE	NAME
10001	DE	KENT	24019	MD	DORCHESTER
10003	DE	NEW CASTLE	24021	MD	FREDERICK
10005	DE	SUSSEX	24023	MD	GARRETT
11001	DC	DISTRICT OF COLUMBIA	24025	MD	HARFORD
24001	MD	ALLEGANY	24027	MD	HOWARD
24003	MD	ANNE ARUNDEL	24029	MD	KENT
24005	MD	BALTIMORE	24031	MD	MONTGOMERY
24009	MD	CALVERT	24033	MD	PRINCE GEORGES
24011	MD	CAROLINE	24035	MD	QUEEN ANNES
24013	MD	CARROLL	24037	MD	SAINT MARYS
24015	MD	CECIL	24039	MD	SOMERSET
24017	MD	CHARLES	24041	MD	TALBOT

FIPS	STATE	NAME	FIPS	STATE	NAME
24043	MD	WASHINGTON	42099	PA	PERRY
24045	MD	WICOMICO	42105	PA	POTTER
24047	MD	WORCESTER	42107	PA	SCHUYLKILL
24510	MD	BALTIMORE CITY	42109	PA	SNYDER
36003	NY	ALLEGANY	42111	PA	SOMERSET
36007	NY	BROOME	42113	PA	SULLIVAN
36011	NY	CAYUGA	42115	PA	SUSQUEHANNA
36015	NY	CHEMUNG	42117	PA	TIOGA
36017	NY	CHENANGO	42119	PA	UNION
36023	NY	CORTLAND	42127	PA	WAYNE
36025	NY	DELAWARE	42131	PA	WYOMING
36043	NY	HERKIMER	42133	PA	YORK
36051	NY	LIVINGSTON	51001	VA	ACCOMACK
36053	NY	MADISON	51003	VA	ALBEMARLE
36065	NY	ONEIDA	51005	VA	ALLEGHANY
36067	NY	ONONDAGA	51007	VA	AMELIA
36069	NY	ONTARIO	51009	VA	AMHERST
36077	NY	OTSEGO	51011	VA	APPOMATTOX
36095	NY	SCHOHARIE	51013	VA	ARLINGTON
36097	NY	SCHUYLER	51015	VA	AUGUSTA
36101	NY	STEUBEN	51017	VA	BATH
36107	NY	TIOGA	51019	VA	BEDFORD
36109	NY	TOMPKINS	51023	VA	BOTETOURT
36123	NY	YATES	51029	VA	BUCKINGHAM
42001	PA	ADAMS	51031	VA	CAMPBELL
42009	PA	BEDEORD	51033	VA	CAROLINE
42011	PA	BERKS	51036	VA	CHARLES CITY
42013	PA	BLAIR	51037	VA	CHARLOTTE
42015	PA	BRADFORD	51041	VA	CHESTERFIELD
42021	PA	CAMBRIA	51043	VA	CLARKE
42023	PA	CAMERON	51045	VA	CRAIG
42025	PA	CARBON	51047	VA	CULPEPER
42027	PA	CENTRE	51049	VA	
42029	PA	CHESTER	51053	VA	DINWIDDIF
42033	PA	CLEARFIELD	51057	VA	FSSFX
42035	PA	CLINTON	51059	VA	FAIRFAX
42037	PA	COLUMBIA	51061	VA	FAUOUIER
42041	PA	CUMBERLAND	51065	VA	FLUVANNA
42043	PA	DAUPHIN	51069	VA	FREDERICK
42047	PA	ELK	51071	VA	GILES
42055	PA	FRANKLIN	51073	VA	GLOUCESTER
42057	PA	FULTON	51075	VA	GOOCHLAND
42061	PA	HUNTINGDON	51079	VA	GREENE
42063	PA	INDIANA	51085	VA	HANOVER
42065	PA	JEFEERSON	51087	VA	HENRICO
42067	PA	JUNIATA	51091	VA	HIGHLAND
42069	PA	LACKAWANNA	51093	VA	ISLE OF WIGHT
42071	PA	LANCASTER	51095	VA	JAMES CITY
42075	PA	LEBANON	51097	VA	KING AND OUEEN
42079	PA	LUZERNE	51099	VA	KING GEORGE
42081	PA	LYCOMING	51101	VA	KING WILLIAM
42083	PA	MCKEAN	51103	VA	LANCASTER
42087	PA	MIFFLIN	51107	VA	LOUDOUN
42093	PA	MONTOUR	51109	VA	LOUISA
42097	PA	NORTHUMBERLAND	51111	VA	LUNENBURG

FIPS	STATE	NAME	FIPS	STATE	NAME
51113	VA	MADISON	51600	VA	FAIRFAX CITY
51115	VA	MATHEWS	51610	VA	FALLS CHURCH CITY
51119	VA	MIDDLESEX	51630	VA	FREDERICKSBURG CITY
51121	VA	MONTGOMERY	51650	VA	HAMPTON CITY
51125	VA	NELSON	51660	VA	HARRISONBURG CITY
51127	VA	NEW KENT	51670	VA	HOPEWELL CITY
51131	VA	NORTHAMPTON	51678	VA	LEXINGTON CITY
51133	VA	NORTHUMBERLAND	51680	VA	LYNCHBURG CITY
51135	VA	NOTTOWAY	51683	VA	MANASSAS CITY
51137	VA	ORANGE	51685	VA	MANASSAS PARK CITY
51139	VA	PAGE	51700	VA	NEWPORT NEWS CITY
51145	VA	POWHATAN	51710	VA	NORFOLK CITY
51147	VA	PRINCE EDWARD	51730	VA	PETERSBURG CITY
51149	VA	PRINCE GEORGE	51735	VA	POQOUSON CITY
51153	VA	PRINCE WILLIAM	51740	VA	PORTSMOUTH CITY
51157	VA	RAPPAHANNOCK	51760	VA	RICHMOND CITY
51159	VA	RICHMOND	51790	VA	STAUNTON CITY
51161	VA	ROANOKE	51800	VA	SUFFOLK CITY
51163	VA	ROCKBRIDGE	51810	VA	VIRGINIA BEACH CITY
51165	VA	ROCKINGHAM	51820	VA	WAYNESBORO CITY
51171	VA	SHENANDOAH	51830	VA	WILLIAMSBURG CITY
51177	VA	SPOTSYLVANIA	51840	VA	WINCHESTER CITY
51179	VA	STAFFORD	54003	WV	BERKELEY
51181	VA	SURRY	54023	WV	GRANT
51187	VA	WARREN	54027	WV	HAMPSHIRE
51193	VA	WESTMORELAND	54031	WV	HARDY
51199	VA	YORK	54037	WV	JEFFERSON
51510	VA	ALEXANDRIA CITY	54057	WV	MINERAL
51530	VA	BUENA VISTA CITY	54063	WV	MONROE
51540	VA	CHARLOTTESVILLE CITY	54065	WV	MORGAN
51550	VA	CHESAPEAKE CITY	54071	WV	PENDLETON
51560	VA	CLIFTON FORGE CITY	54077	WV	PRESTON
51570	VA	COLONIAL HEIGHTS CITY	54093	WV	TUCKER
51580	VA	COVINGTON CITY			

Table C-12. Sampling Gear (GMETHOD).

The GMETHOD codes represent information relating to the type of field gear used to collect samples for all analysis. Additional codes may be added as needed. Currently accepted G_METHODS designations are as follows:

GEAR METHOD DESCRIPTION	GEAR METHOD DETAILS
HAND DREDGE	
DREDGE	
ARTIFICIAL SUBSTRAIT	UNSPECIFIED
DIATOMER SLIDES	
CLARKE-BUMPUS SAMPLER	
PLANKTON TRAP	UNSPECIFIED
PLANKTON PUMP	UNSPECIFIED
PLANKTON NET	UNSPECIFIED
PLANKTON NET	500µ MESH
PLANKTON NET	NO. 20, 80µ MESH
PLANKTON NET	10µ MESH
	GEAR METHOD DESCRIPTION HAND DREDGE DREDGE ARTIFICIAL SUBSTRAIT DIATOMER SLIDES CLARKE-BUMPUS SAMPLER PLANKTON TRAP PLANKTON NET PLANKTON NET PLANKTON NET PLANKTON NET

G_METHOD	GEAR METHOD DESCRIPTION	GEAR METHOD DETAILS
12	BEAM PLANKTON LINE	
13	ANCHOR DREDGE	
14	HYDRAULIC GRAB	1200 SQ. CM
15	HAND CORE	45 SQ. CM
16	POST-HOLE DIGGER	200 SQ. CM
17	PONAR GRAB	200 SQ. CM
18	PONAR GRAB	1000 SQ. CM
19	PONAR GRAB	50 SQ. CM
20	BOX CORE GRAB	0.018 M2
21	VAN VEEN GRAB	0.07 M2
22	SHIPEK GRAB	0.04 M2
23	SEINE HAUL	UNSPECIFIED
24	SMITH-MACINTIRE GRAB	1000 SQ CM
25	SEINE NET	15 FT, 1/8 IN STRECH MESH
26	SEINE NET	50 FT, 1/2 IN STRECH MESH
27	SEINE NET	50 FT, 1/4 IN STRECH MESH
28	SEINE NET	200 FT , 1/2 IN STRECH MESH, NET 200X 20
29	SEINE NET	10 FT , 1/4 IN STRECH MESH, NET 10X4
30	TRAWL	UNSPECIFIED
31	OTTER TRAWL	6 FT, 1 IN. MESH, W/ 1/2 IN INNER LINER
32	OTTER TRAWL	25 FT, 1.24 IN. MESH, W/ 1/2 IN INNER LINER
33	TRAWL	15 FT SEMI-BALLON
34	TUCKER TRAWL	2 MM. MESH, 1 SQ. METER
35	CARGO_SLED	Cargo jellyfish sled
36	TRAWL	16 FT SEMI-BALLON, 1/2 IN MESH
37	OTTER TRAWL	10 FT, 1/4 IN. MESH, W/500 μ IN INNER LINER
38	MID-WATER TRAWL	5 FT, 1/4 IN. MESH, W/500 μ IN INNER LINER
39	VISUAL COUNT	
41	ELECTROSHOCKER	
42	ECKMAN CAGE	
43	CAGE	
44	CATFISH TRAP	
45	CRAYFISH TRAP	
46		
4/	ANIMAL I RAP	
48	HOOK AND LINE FISHING	
49		
50		
51		
52		
53 E 4		
94 FF		
00 E4		
50		UNSELCIFIED FOO MICDON MESH 12 INCH DIAMETED
57		
50		0.5 METER BT 0.5 METERS
59 60		
61		
62	SEDIMENT TRAP ARRAV	
63	SEINE NET	50 FT 1/4 IN MESH NET 100X4 FT
64	BONGO NET	UNSPECIFIED
65	PURSE SEINE	
66	FYKE AND HOOP NETS	
67	POTS	

G_METHOD	GEAR METHOD DESCRIPTION	GEAR METHOD DETAILS
68	BOX TRAP	
69	PUSH NET	
70	GREAT LAKE SHOAL	1-2 INCHES
71	GREAT LAKE SHOAL	2-4 INCHES
72	GREAT LAKE SHOAL	4-7 INCHES
73	GREAT LAKE SHOAL	7-14 INCHES
74	BEAM TRAWL	
75	BONGO NET	202 µ, 20 CM OPENING, 0.76 M LENGTH
76	BONGO NET	202 µ, 50 CM OPENING, 4 M LENGTH
77	RESERVED	
78	SLAT TRAP	
79	RESERVED	
80	GIL NETS	
81	USNOL SPADE CORE	0.06 M2 SPADE BOX CORE
82	PONAR GRAB-ODU	
83	DOUBLE PONAR GRAB-VA DEQ	50 SQ CM
84	RESERVED	
86	KICK NET	23 CM x 46 CM, MESH OPEN SIZE 0.8MM BY 0.9 MM
87	KICK NET	UNSPECIFIED
88	RESERVED	
89	D-FRAME NET	UNSPECIFIED
90	HESTER DENDY MULTIPLATE SAMPL	
91	SURBER SAMPLER	
92	KICK SEINE	
93	D-FRAME NET	600 MICRON, 12 INCH DIAMETER
94	KICK NET	600 MICRON, 1 SQUARE METER KICK SCREEN
96	HYDROLIC VAN VEEN GRAB	0.1 SQUARE METERS
97	YOUNG MODIFIED VAN VEEN GRAB	0.04 SQ M
98	PETITE PONAR GRAB	25 SQUARE CM
99	SMITH-MACINTIRE GRAB	0.3 SQUARE METER
100	SMITH-MACINTIRE GRAB	0.2 SQUARE METER

Table C-13. USGS Hydrologic Unit Codes (HUC 8).

As part of the geographic referencing of stations, locations have been matched with its corresponding USGS hydrologic unit code (HUC). In 2010, USGS revised their HUC system to a six levels in the hierarchy, represented by hydrologic unit codes from 2 to 12 digits long, called regions, subregions, basins, subbasins, watersheds, and subwatersheds. The original delineation of units, down to subbasins (cataloging units), was done using 1:250,000 scale maps and data. The newer delineation work on watersheds and subwatersheds was done using 1:24,000 scale maps and data. As a result, the subbasin boundaries were changed and adjusted in order to conform to the higher resolution watersheds within them. Changes to subbasin boundaries resulted in changes in area sizes.

Digits	Old Reporting Units	New Reporting Units	Average size (square miles)	Number of New Units in Watershed
2	Region	Region	177,560	1
4	Subregion	Subregion	16,800	5
6	Accounting Unit	Basin	10,596	8
8	Cataloging Units	Subbasin	700	57
10	Not Available	Watershed	277	427
12	Not Available	Subwatershed	40	1980

Currently in the Chesapeake Bay watershed Data bases focusing on sampling in tidal areas are georeferenced to the 8 Digit Hydrologic unit. Non-tidal databases are georeferenced to the full 12 digit hydrologic unit. Please see online data dictionaries for full details.

The following are currently accepted 8-digit HUC and SUBBASIN_UNIT_DESCRIPTIONS appearing in tidal databases:

HUC_8	SUBBASIN_UNIT_DESCRIPTION	HUC
02040303	CHINCOTEAGUE	020
02040304	EASTERN LOWER DELMARVA	0208
02050306	LOWER SUSQUEHANNA	020
02060001	UPPER CHESAPEAKE BAY	020
02060002	CHESTER-SASSAFRAS	020
02060003	GUNPOWDER-PATAPSCO	0208
02060004	SEVERN	020
02060005	CHOPTANK	020
02060006	PATUXENT	020
02060007	BLACKWATER-WICOMICO	020
02060008	NANTICOKE	0208
02060009	POCOMOKE	0208
02060010	CHINCOTEAQUE	020
02070010	MIDDLE POTOMAC-ANACOSTIA-	0208
	OCCOQUAN	

C 8 SUBBASIN UNIT DESCRIPTION 70011 LOWER POTOMAC 80101 LOWER CHESAPEAKE BAY 80102 **GREAT WICOMICO-PIANKATANK** 80104 LOWER RAPPAHANNOCK 80105 MATTAPONI 80106 PAMUNKEY 80107 YORK 80108 LYNNHAVEN-POQUOSON 80109 WESTERN LOWER DELMARVA 80110 EASTERN LOWER DELMARVA 80205 MIDDLE JAMES-WILLIS 80206 LOWER JAMES 80207 APPOMATTOX 80208 HAMPTON ROADS

Table C-14. B-IBI BOTTOM TYPE Characterization (IBI BOTTOM).

These codes store information identifying bottom type classifications used in the calculation of Tidal Benthic IBI metric values. Bottom type is based on the sand-to-clay percentages observed in the sediment analysis from each site. The IBI BOTTOM TYPE codes used to classify site types as follows:

IBI_BOTTOM_TYPE	DESCRIPTION	SILT-CLAY CONTENT
Μ	MUD	>40% SILT-CLAY
S	SAND	0-40% SILT-CLAY

Table C-15. B-IBI METHOD Description (IBI_METHOD).

These codes store information identifying analytical method used in the calculation of benthic IBI metric values. Method codes currently exist for benthic indexes only. The current IBI_METHOD codes are as follows:

IBI_METHOD IBI_METHOD_TITLE

CBP_2010	CHESAPEAKE BAY PROGRAM CHESSIE NON TIDAL BIBI 2010
CBP_MACS	MID-ATLANTIC COASTAL STREAM IBI
PADEP	PENSYLVANIA DEPARTMENT OF THE ENVIRONMENT PROTOCAL
CBP	CBP 2004 IMPLEMENTATION OF THE TIDAL CHESAPEAKE BAY B-IBI
VERSAR	VERSAR IMPLEMENTATION OF THE TIDAL CHESAPEAKE BAY B-IBI

Table C-16. Calculated Biological Metrics Description IBI_PARAMETER).

These codes store information identifying calculated metrics used in indexes of biotic integrity and other indicators. Method codes currently exist for benthic indexes only. Currently accepted IBI_PARAMETER and IBI_PARAMETER_DESCRIPTION designations are as follows:

IBI_PARAMETER	IBI_PARAMETER_DESCRIPTION
ASPT_MOD	Average of each individual's family-level tolerance score
ASPT_MOD_R	Average of each individual's family-level tolerance score calculated on
	Rarefaction Data
BECK	Becks Index based on family-level taxonomy-classical calculation
BECK R	Becks Index based on family-level taxonomy-classical calculation-calculated on
- <u>-</u>	Rarefaction Data
BIOMASS CHL RATIO	Total Phytoplankton Biomass To Chl Ratio
CELL SIZE	Average Cell Size PG/Cell
CHL SURF	Surface Chlorophyll A (0.5 M)
CHLA	Ave Laver Chla In UG/I
CHLORO ABLIND	Total Chlorophyte Abundance In Number/Liter
CHLORO BIOMASS	Total Chlorophyte Biomass In LIG Carbon/Liter
CHRYSO ABLIND	Total Chrysophyte Abundance In Number/Liter
CHRYSO BIOMASS	Total Chrysophyte Riomass In LIG Carbon/Liter
	Total Cochlodinium Abundance In Number/Liter
	Total Cochlodinium Riomass In UC Carbon/
	Total Cryntonbyte Abundance In Number/Liter
	Percent Cryntonhyte Riomass
	Total Cryptophyte Biomass In LIC Carbon/Liter
	Total Cvanonhyte Abundance In Number/Liter
	Percent Cvanophyte Riomass
	Total Cvanophyte Biomass In UC Carbon/Liter
DIATOM ABUND	Total Diatom Abundance In Number/Liter
DIATOM BIO PCT	Percent Diatom Riomass
	Total Diatom Biomass In LIG Carbon/Liter
	Ave Laver Dissolved Organic N ($NO2+NO3+NHA$) In Ma/I
	Total Dinoflaggelate Abundance In Number/Liter
	Percent Dinoflaggelate Riomass
	Total Dinoflaggelate Biomass In UC Carbon/Liter
DIPTERA TAXA CNIT	Count Of Dintera Families
DIPTERA TAXA CNT R	Count Of Diptera Families
	Average Laver Dissolved Oxygen In Mg/I
	Average Layer Dissolved Organic Carbon Conc. In Mg/L
ΕΡΗΕΜΕΡΩΡΤΕΡΑ ΤΔΧΑ ΩΝΤ	Count Of Enhemerontera Families
EPHEMEROPTERA TAXA ONT R	Count Of Ephemeroptera Families. Calculated On Rarefaction Data
	Total Abundance Of Enhamerontera, Placontera & Trichontera Individuals
	Total Abundance Of Ephemeroptera, Plecontera & Trichoptera Individuals
	Calculated On Parafaction Data
FPT ΤΔΧΔ COUNT	Number Of Enhemerontera, Plecontera & Trichontera Families
	Number Of Ephemeroptera, Plecoptera & Trichoptera Families Number Of Ephemeroptera, Plecoptera & Trichoptera Families Excluding
	Those With Tolerance Values >-7
ΕΡΤ ΤΑΧΑ COUNT NO TOL R	Number Of Enhemerontera, Plecontera & Trichontera Families Excluding
	Those With Tolerance Values > -7 -Calculated On Parefaction Data
FPT TAXA COUNT R	Number Of Enhemerontera, Plecontera & Trichontera Families-Calculated On
	Rarefaction Data
EUGLENO ABUND	Total Fuglenonbyte Abundance In Number/Liter Above Pychocline
FUGLENO BIOMASS	Total Euglenophyte Riomass In LIG Carbon/Liter Above Pychocline
FBI	Hilsenhoff Family-I evel Biotic Index
FBL R	Hilsenhoff Family-Level Biotic Index - Calculated On Rarefaction Data
	The second

IBI_PARAMETER	IBI_PARAMETER_DESCRIPTION
GOLD	1- Relative Percentage Abundance Of Gastropods, Oligochaeta And Diptera
GOLD_R	1- Relative Percentage Abundance Of Gastropods, Oligochaeta And Diptera
	Individuals-Calculated On Rarefaction Data
	Fixed Station Replicate Averaged Total Benthic Restoration Goal Score
	Total Haptophyte Abundance in Number/Liter Above Pychocime
	Total Haptophyte Biomass in µG Carbon/Liter Above Pychocline
	Margalet's Index Based On Family-Level Taxonomy
MARGALEFS_R	Nalyalers index based On Family-Lever Taxonomy-Calculated On Rateraction
	Udld Calculated On Derefaction Data
	-Calculated OTERatelation Data Total Microcystic Abundance In Number/Liter Above Dycnocline
MICHOCISTIS_AER_ADOND MICDOCVSTIS_AED_BIOMASS	Total Microcystis Riomass In LIC Carbon/Liter Above Pychocline
	Count Of Families In Sample Minus Chironomidae And Oligochaete Families
	Count Of Families In Sample Minus Chironomidae And Oligochaete Families
	Calculated On Parefaction Data
NON INSECT TAXA ONT	Count Of Non-Insect Families
NON INSECT TAXA CNT R	Count Of Non-Insect Families-Calculated On Rarefaction Data
PC	Ave Laver Particulate Carbon Conc. In Mo/I
PCT BIO DP05	Percent Total Biomass Found greater Than 5 Cm Below Sediment Water
	Interface
PCT_BURROWER	Percent Of Individuals That Are Adapted For Burrowing
PCT_BURROWER_R	Percent Of Individuals That Are Adapted For Burrowing-Calculated On
	Rarefaction Data
PCT_CARN_OMN	Percent Carnivores And Omnivores
PCT_CHIRONOMIDAE	Percent Of Individuals That Are Chironomids
PCT_CHIRONOMIDAE_R	Percent Of Individuals That Are Chironomids -Calculated On Rarefaction Data
PCT_CLIMB	Percent Of Individuals That Are Adapted For Climbing
PCT_CLIMB_R	Percent Of Individuals That Are Adapted For Climbing-Calculated On
	Rarefaction Data
PCT_CLING	Percent Of Individuals That Are Adapted For Clinging
PCT_CLING_R	Percent Of Individuals That Are Adapted For Clinging-Calculated On
	Rarefaction Data
PCT_CLINGER_TAXA	Count Of Clinger Families Expressed As A Percent Of The Total Number Of
DOT OLINOED TAVA D	Families Present in Sample
PCT_CLINGER_TAXA_R	Count Of Clinger Families Expressed As A Percent Of The Total Number Of
	Families Present in Sample-Calculated On Rafelaction Data
	Percent Of Individuals That Are Collectors (Fillerers + Gatherers) Dercent Of Individuals That Are Collectors (Filterers + Catherers) Calculated
PCI_COLLECI_K	On Parofaction Data
	Dercent Deen Denosit Feeders
PCT_DIPTERA	Percent Of Individuals That Are Dintera
PCT DIPTERA R	Percent of Individuals That Are Diptera -Calculated On Rarefaction Data
PCT_DOM1	Percent of Individuals That Belong To The Most Common Families
PCT DOM1 R	Percent Of Individuals That Belong To The Most Common Families-Calculated
	On Rarefaction Data
PCT_DOM2	Percent Of Individuals That Belong To The Two Most Common Families
PCT_DOM2_R	Percent Of Individuals That Belong To The Two Most Common Families-
	Calculated On Rarefaction Data
PCT_DOM3	Percent Of Individuals That Belong To The Three Most Common Families
PCT_DOM3_R	Percent Of Individuals That Belong To The Three Most Common Families-
	Calculated On Rarefaction Data
PCT_EPHEMEROPTERA	Percent Of Individuals That Are Ephemeroptera
PCT_EPHEMEROPTERA_R	Percent Of Individuals That Are Ephemeroptera -Calculated On Rarefaction
	Data
IBI_PARAMETER_DESCRIPTION	

Percent Of Individuals That Are Ephemeroptera, Plecoptera And Trichoptera	
(EPT)	
Percent Of Individuals That Are Ephemeroptera, Plecoptera And Trichoptera	
(EPT) -Calculated On Rarefaction Data	
Count Of EPT Families Expressed As A Percent Of The Total Number Of	
Families Present In Sample	
Count Of EPT Families Expressed As A Percent Of The Total Number Of	
Families Present In Sample-Calculated On Rarefaction Data	
Percent Of Individuals That Are Adapted For Filtering Fine Particles	
Percent Of Individuals That Are Adapted For Filtering Fine Particles-Calculated	
On Rarefaction Data	
Percent Of Individuals That Are Adapted For Gathering	
Percent Of Individuals That Are Adapted For Gathering-Calculated On	
Rarefaction Data	
Percent Of Individuals That Are Isonods Amphinods And Enhemeralla	
Percent Of Individuals That Are Isopods, Amphipods, And Ephomeralia	
Calculated On Rarefaction Data	
Percent Of Individuals That Are Net-Spinning Caddisflies	
Percent Of Individuals That Are Net-Spinning Caddishies	
Parofaction Data	
Dorcont Of Individuals That Aro Not Insorts	
Porcent Of Individuals That Are Not Insects Dercent Of Individuals That Are Not Insects Calculated On Parefaction Data	
Percent Of Individuals That Are Not Insects -Calculated Of Ratefaction Data	
Percent Pollution Indicative Species Abundance-Indi Dentinic	
Dercent Pollution Indicative Species Abundance Tidal Fresh Ponthic	
Percent Pollution Indicative Species Abundance-Indi Fresh Denthic	
Percent Pollution Indicative Species Abundance Oligobaline Ponthic	
Percent Pollution Indicative Species Abundance-Oligonaline Denthic	
Percent Of Individuals That Are Discontors	
Percent Of Individuals That Are Piecoptera	
Percent Of Individuals That Are Precoptera-Calculated On Rarelaction Data	
Percent Of Individuals That Are Predatory	
Percent Of Individuals That Are Predatory-Calculated On Rarelaction Data	
Percent Pollution Sensitive Species Abundance- I dal Benthic	
Percent Pollution Sensitive Species Blomass- I Idal Benthic	
Percent Pollution Sensitive Species Abundance-Oligonaline Benthic	
Percent Pollution Sensitive Species Biomass-Oligonaline Benthic	
Percent Of Individuals That Are Adapted For Scraping Periphyton From Hard	
Surfaces	
Percent Of Individuals That Are Adapted For Scraping Periphyton From Hard	
Surfaces-Calculated On Rarefaction Data	
Percent Of Individuals That Have Family Level Tolerance Values < 3	
Percent Of Individuals That Have Family Level Tolerance Values < 3-	
Calculated On Rarefaction Data	
Percent Of Individuals That Are Adapted For Shredding Coarse Organic	
Material	
Percent Of Individuals That Are Adapted For Shredding Coarse Organic	
Material-Calculated On Rarefaction Data	
Percent Of Individuals That Are Simuliidae (Black flies)	
Percent Of Individuals That Are Simuliidae (Black flies) -Calculated On	
Rarefaction Data	
Percent Of Individuals That Are Adapted For Swimming	
Percent Of Individuals That Are Adapted For Swimming-Calculated On	
Rarefaction Data	
Percent Tanypodinae To Chironomidae-Tidal Benthic	
Percent Of Individuals That Have Family-Level Tolerance Values >= 7	

IBI_PARAMETER

PCT_TOLERANT_R

PCT TRICHOPTERA PCT TRICHOPTERA NO TOL PCT_TRICHOPTERA_NO_TOL_R PCT TRICHOPTERA R PHEO PHYTO_TOT_ABUND PHYTO_TOT_BIOMASS PICO_ABUND PICO_BIOMASS PLECOPTERA TAXA CNT PLECOPTERA_TAXA_CNT_R PO4 PRASINO ABUND PRASINO_BIOMASS PROROCENTRUM_MIN_ABUND PROROCENTRUM_MIN_BIOMASS RATIO_SC_TO_CF RATIO_SC_TO_CF_R RATIO_SC_TO_SH RATIO_SC_TO_SH_R RATIO SH TO CG RATIO_SH_TO_CG_R SALINITY SCRAPER TAXA CNT SCRAPER_TAXA_CNT_R Secchi SENSITIVE TAXA COUNT SENSITIVE_TAXA_COUNT_R SIMPSON DIVERSITY SIMPSON_DIVERSITY_R SW SW R TAXA RICH TAXA_RICH_R TOC TOLERANCE TOLERANT_TAXA_COUNT TOLERANT_TAXA_COUNT_R TOT BIOMASS TOT TXA DP05 TOTAL_ABUNDANCE TOTAL ABUNDANCE R TOTAL SCORE

TRICHOPTERA_TAXA_CNT

TRICHOPTERA TAXA CNT R

TRICHOPTERA_TAXA_COUNT_NO_HYDR

IBI_PARAMETER_DESCRIPTION

Percent Of Individuals That Have Family-Level Tolerance Values >= 7 -Calculated On Rarefaction Data Percent Of Individuals That Are Trichoptera Percent Of Individuals That Are Trichoptera Excluding Hydropsychidae Percent Of Individuals That Are Trichoptera Excluding Hydropsychidae -Calculated On Rarefaction Data Percent Of Individuals That Are Trichoptera -Calculated On Rarefaction Data Average Layer Pheophytin Concentration In Mg/L Total Phytoplankton Abundance In Number/Liter Total Phytoplankton Biomass In µG Carbon/ Total Picoplankton Abundance In Number/Liter Above Pycnocline Total Picoplankton Biomass In µG Carbon/Liter Count Of Plecoptera Families Count Of Plecoptera Families-Calculated On Rarefaction Data Average Layer PO4 Concentration In Mg/L Total Prasinophyte Abundance In Number/Liter Total Prasinophyte Biomass In µG Carbon/ Prorocentrum_Minimum Abundance In Number/Liter Prorocentrum_Minimum Biomass In µG Carbon/Liter Ratio Of Scrapers To Collector-Filterers Ratio Of Scrapers To Collector-Filterers-Calculated On Rarefaction Data Ratio Of Scrapers To Shredders Ratio Of Scrapers To Shredders-Calculated On Rarefaction Data Ratio Of Shredders To Collector-Gatherers Ratio Of Shredders To Collector-Gatherers-Calculated On Rarefaction Data Ave Layer Salinity In PSU **Count Of Scraper Families** Count Of Scraper Families-Calculated On Rarefaction Data Secchi Depth In Meters Count Of Families That Have Family-Level Tolerance Values <= 3 Count Of Families That Have Family-Level Tolerance Values <= 3-Calculated On Rarefaction Data Simpson Diversity Index Based On Family-Level Taxonomy Simpson Diversity Index Based On Family-Level Taxonomy-Calculated On Rarefaction Data Shannon Wiener Index - Taxonomic Level Will Vary By Index Shannon Wiener Index Based On Family-Level Taxonomy-Calculated On Rarefaction Data Count Of Families In Sample Count Of Families In Sample -Calculated On Rarefaction Data Average Layer Total Organic Carbon Conc. In Mg/L Tidal Benthic Pollution Tolerance Index Count Of Families That Have Family-Level Tolerance Values >= 7 Count Of Families That Have Family-Level Tolerance Values >= 7-Calculated On Rarefaction Data Total Species Biomass In (Units Will Vary) Species Abundance Found Greater Than 5 Cm Below Sediment Water Interface Total Number Of Individuals (Units Will Vary) Total Number Of Individuals In Sample-Calculated On Rarefaction Data Total Benthic Restoration Goal Score For Sample **Count Of Trichoptera Families** Count Of Trichoptera Families -Calculated On Rarefaction Data Trichoptera Taxa Count Excluding Hydropsychidae

IBI_PARAMETER	IBI_PARAMETER_DESCRIPTION
TRICHOPTERA_TAXA_COUNT_NO_R	Count Of Trichoptera Families Excluding Hydropsychidae -Calculated On
	Rarefaction Data
TSS	Average Layer Total Suspended Solids
WTEMP	Average Layer Water Temperature in Celsius

Table C-17. B-IBI SALZONE Designation (IBI_SALZONE).

These codes identify the various salinity classifications used in the calculation of Tidal plankton and Tidal Benthic IBI metric values. Salinity zone is based on the observed salinity in the water quality data from each site. The IBI_SALZONE codes used to classify site types as follows:

IBI_SALZONE	DESCRIPTION	RANGE
HM	High Mesohaline	=>12 TO 18 PSU
LM	Low Mesohaline	=>5.0 TO 12 PSU
Μ	Mesohaline	=>5.0 TO 18 PSU
0	Oligohaline	=>0.5 TO 5.0 PSU
Р	Polyhaline	=>18 PSU
TF	Tidal Fresh	< 0.5 PSU

Table C-18. Karst Designation (KARST).

These codes identify area of Karst geology. Information is based on the USGS Preliminary Map of Potentially Karstic Carbonate Rocks in the Central and Southern Appalachian States: complete OF 2008-1154 map plate. (http://pubs.usgs.gov/of/2008/1154/) Currently accepted KARST codes and KARST DESCRIPTION designations are as follows:

- KARST KARST_DECSRIPTION
- CPU Coastal Plain Unconsolidated Sediments
- FFC Folded Faulted Carbonated Rock
- FFCG Folded Faulted Carbonated Rock With Glacial Cover
- GC Gently Folded Carbonated Rock
- GCG Gently Folded Carbonated Rock With Glacial Cover
- IC Carbonates Embedded With Non-Soluble Rock
- M Marble And Meta-Limestone
- NONE Non-Carst Area
- TJB Triassic-Jurassic Aged Basin

Table C-19. Analytical Laboratory (LAB).

The lab code identifies the laboratory that analyzed the water samples. This table contains information to parameter names. Currently accepted LAB and LAB_DESCRIPTION designations are as follows:

- AMRL Old Dominion University Applied Marine Research Laboratory (This Lab Became The ODU Lab In May, 2000)
- BPFL Blue Plains Field Laboratory
- CBL University Of Maryland Chesapeake Biological Laboratory
- CRL US EPA-Central Regional Laboratory (Moved To Ft Meade 1999)
- DENREC Delaware Department Of Natural Resources And Environmental Control
- ELB District Of Columbia Dept Of Health Environmental Laboratory Branch At EPA
- EPA-UNSP EPA Laboratory-Unspecified
- FIELD Field Parameter-No Lab Associated With Sample
- MDHMH Maryland Department Of Health And Mental Hygiene
- MDHMH-WM Maryland Department Of Health And Mental Hygiene-Western Maryland Lab
- NYDEC Columbia Analytical Services

LAB	LAB_DESCRIPTION
ODU	Old Dominion University Laboratory
OWML	Occoquan Watershed Monitoring Laboratory
PADEP	Pennsylvania Department Of Environmental Protection Lab
SMRP	St Mary's River Project
SRBC	Susquehanna River Basin Commission Lab
UMCES-AL	University Of Maryland Appalachian Laboratory
UNKNOWN	Unknown Or Lab Not Specified
USGS-KDSL	United States Geological Survey Kentucky District Sediment Laboratory
USGS-NWQL	United States Geological Survey National Water Quality Laboratory
USGS-SED	USGS Sediment Laboratory In Kentucky
VADCLS	Virginia Division Of Consolidated Laboratory Services
VCU	Virginia Commonwealth University
VIMS	Virginia Institute Of Marine Science

Table C-20. Sample Layer (LAYER).

These codes are used to describe the water layer or sediment being sampled.

LAYER	DESCRIPTION	LAYER	DESCRIPTION
S	Surface	AT	Above thermocline
Μ	Middle	BT	Below thermocline
В	Bottom	AE	Above euphotic zone
SE	Sediment	BE	Below euphotic zone
SW	Sediment/water interface (0 - 1cm)	MI	Microlayer
AP	Above pycnocline	WC	Whole water column
BP	Below pycnocline		

Table C-21. Life Stage (LIFE_STAGE).

This table stores information in relating to the identification of species life stages in taxonomic data. The currently accepted LIFE_STAGE values and DESCRIPTIONS are as follows:

LIFE_STAGE		LIFE_STAGE	
CODE	LIFE_STAGE_DESCRIPTION	CODE	LIFE_STAGE_DESCRIPTION
00	Εαα	<u>-</u> 53	Species B
01	Yolk Sac	54	Species C
02	Fin Fold	55	Species D
02	Post Fin Fold	56	Species E
01	Voar Class O	50	Species E
04 05	Vear Class U	57	Species A Full
03	real Class I OI Oluei	00	Species A-Full
00	Juveniles And Adults	59	Species A-Empty
07	Larvae, Juvennes And Aduits	00	Species B-Full
08	Larvae And Juveniles	61	Species B-Empty
09	Nauplii And Peritrichs	62	Species C-Full
10	Nauplii Or Copepodite	63	Species C-Empty
11	Nauplii	64	Embryo
12	Copepodite	65	Neonites
13	Orthonauplii Stage 1-3	66	Male, Age Class 2
14	Metanauplii Stage 4-6	67	Female, Immature Age Class 0
15	Copepodite Stage 1-3	68	Female, Immature Age Class 1
16	Copepodite Stage 4-6	69	Female, Mature Age Class 1
17	Cypris Larvae	70	Female, Mature Age Class 2
18	Reserved For Future Use	71	Female, Mature Age Class 0
19	Copepod Egg	72	Female, Immature Age Class 2
20	Nymnh	73	Salns
20	Punao	73	Malo Adult
21	Pharato	75	Female Unspecified Are
22	Instar	75	Croup
23	IIISIdi Najad		With Cap. Sataa
24 25	Nalau Listahari Markad Organiam	70	Willi Cap. Selde
20	Halchely Markeu Organism	78 70	Serae
20		19	Spp.
	Age U MDDNR Hatchery	80	Molted
27	Marked Organism	81	Unmolted
28	Age 1 MDDNR Hatchery Marked Organism	82	Large
	Age 2 Or Greater MDDNR Hatchery Marked	83	Large-Full
29	Organism	84	Large-Empty
30	Prezoea	85	Full
31	Zoea	86	Empty
32	Metazoea	87	Medium
33	Megalops	88	Small
34	Male, Unspecified Age	89	Not Specified
35	Female, Adult	90	Egg- Not Viable
36	Female, Juvenile	91	Subadult
37	MDDNR Hatchery Marked Organism	92	Post Larval
38	Male, Age Class 0	93	Juvenile
39	Male, Age Class 1	94	Taxon With Count Stored As Volume In Milliliters
40	Nauplii Stage 1	95	Mature
41	Nauplii Stage 2	96	Immature
42	Naunlii Stage 3	97	Larvae
12	Naupiii Stage /	08	Adult
43	Naupiii Stago 5	00	Not Applicable
44	Naupiii Stage 5 Naupiii Stage 6	100	20:40um Longth <20um Width
40	Naupili Slaye U Cononadita Stago 1	100	20.470111 Length
40 47	Compondito Stage 2	101	20.470111 Letigiti 20.400m Longth E0.000m Width
47	Cupepudite Stage 2	102	20.490111 Letigti 1 50.790111 Width Cur
4ŏ	Cupepualle Stage 3	103	20:49um Lengin 20:49um Widin Cup
49	Copepodite Stage 4	104	20:49um Length 20:49um Width Cone
50	Copepodite Stage 5	105	20:49um Length 20:49um Width
51	Copepodite Stage 6	106	20:49um Length >20um Width
52	Species A	107	>200um Length

LIFE_STAGE		LIFE_STAGE	
_CODE	LIFE_STAGE_DESCRIPTION	_CODE	LIFE_STAGE_DESCRIPTION
108	20:49um Length <20um Width Cone	168	100:199um Length 100:199um Width Cone
109	50:99um Length <20um Width	169	100:199um Length 100:199um Width Cup
110	100:199um Length >20um Width	170	100:199um Length 20:49um Width Cone
111	>20um Width	171	100:199um Length 20:49um Width Cup
112	<20um Length	172	100:199um Length 50:99um Width Cone
113	<20um Length <20um Width Cup	173	100:199um Length 50:99um Width Cup
114	<20um Length <20um Width Cone	174	100:199um Length Cone
115	<20um Length <20um Width	175	100:199um Length Cup
116	<20um Length Cone	176	100:199um Length
117	20:49um Length <20um Width Cup	177	100:199um Length Empty
118	50:99um Length Empty	178	100:199um Length Full
119	Species C 100:199um Length 100:199um Width	179	20:49um Length <20um Width Empty
120	Species B 50:99um Length 50:99um Width	180	20:49um Length <20um Width Full
121	Species B 50:99um Length 20:49um Width	181	20:49um Length >20um Width Empty
122	Parvula Group Full	182	20:49um Length >20um Width Full
123	Parvula Group	183	20:49um Length 100:199um Width
124	20:49um Length Full	184	20:49um Length 100:199um Width Cone
125	Beroidea Group	185	20:49um Length 100:199um Width Cup
126	Species C 100:199um Length 20:49um Width	186	20:49um Length 50:99um Width Cone
127	50:99um Length	187	20:49um Length 50:99um Width Cup
128	50:99um Length 50:99um Width Cup	188	20:49um Length Cone
129	50:99um Length 50:99um Width Cone	189	20:49um Length Cup
130	50:99um Length 20:49um Width Cone	190	20:49um Lengin Emply
131	50:99um Length 20:49um Width	191	Reserved For Fulure Use
132	50:99um Length 200100um Width	192	50:99um Length <20um Width Cup
133	<20um Length 100:199um Width Cono	193	50:99um Length <20um Width Empty
134	<20um Length 100:199011 Width Cup	194	50.99um Length <20um Width Full
100	<20um Longth 20:40um Width	190	50.99um Longth > 20um Width Empty
130	<20um Longth 20:49um Width Cono	190	50.99um Longth > 20um Width Full
137	<20um Longth 20:49um Width Cun	197	50.990 Longth 100.100 Width Cono
130	<20um Longth 50:00um Width	100	50:99um Longth 100:199um Width Cun
140	<20um Length 50:99um Width Cone	200	50:99um Length Cone
140	<20um Length 50:99um Width Cun	200	50:99um Length Cun
142	<20um Length Cup	202	Reserved For Future Use
143	<20um Length Empty	203	Reserved For Future Use
144	<20um Length Full	204	50:99um Length Full
145	<20um Width	205	Beroidea Group Empty
146	<20um Width Empty	206	Beroidea Group Full
147	<20um Width Full	207	Larvae 20:49um Length
148	>200um	208	Parvula Group Empty
149	>200um Empty	209	Small Empty
150	>200um Full	210	Small Full
151	>200um Length <20um Width	211	Species B 50:99um Length
152	>200um Length <20um Width Empty	212	Species B 50:99um Length <20um Width
153	>200um Length <20um Width Full	213	Species B 50:99um Length 100:199um Width
154	>200um Length >20um Width	214	Species C 100:199um Length
155	>200um Length >20um Width Empty	215	Species C 100:199um Length <20um Width
156	>200um Length >20um Width Full	216	Species C 100:199um Length 50:99um Width
157	>200um Length Empty	217	Species V
158	>200um Length Full	218	Species W
159	>20um Width Empty	219	Species X
160	>20um Width Full	220	Species Y
161	100:199um Length <20um Width	221	Species Z
162	100:199um Length <20um Width Cone	222	Species 1
163	100:199um Length <20um Width Cup	223	Species 2
164	100: 1990m Length <200m Width Empty	224	Species 3
105	100:1990m Length < 200m Width Full	225	Complex
100	100:1990III Length > 200m Width Empty	220	
107	100. 1990III Lengti >200III Wiath Full	221	Sheries II

LIFE_STAGE		LIFE_STAGE	
_CODE	LIFE_STAGE_DESCRIPTION	_CODE	LIFE_STAGE_DESCRIPTION
228	Species I	240	Species U
229	Species J	241	Species 4
230	Species K	242	Species 5
231	Species L	243	Species 6
232	Species M	244	Polyps
233	Species N	245	Туре
234	Species O	246	Variety
235	Species P	247	Immature With Cap. Chaete
236	Species Q	248	Immature Without Cap. Chaete
237	Species R	249	Fragments
238	Species S	250	Ephyra
239	Species T	251	Post Ephyra

Table C-22. Latitude-Longitude Geographic Datum (LL_DATUM).

The LL_DATUM code contains latitude/longitude datum and descriptions. The LL_DATUM code defines the datum under which the latitude and longitude measurements for a particular station were calculated. The currently accepted LL_DATUM and DESCRIPTIONS are as follows:

LL_DATUM	DESCRIPTION
NAD27	1927 North American Datum
NAD83	1983 North American Datum
UNID	Unknown Datum
WGS84	World Geodetic System 1984

Table C-23. Biological Enumeration and Biomass Determination Methods (BIO METHOD).

BIO_METHOD identified the method for enumeration of taxa or biomass determination in the field and laboratory. Currently accepted BIO_METHODS designations are as follows:

BIO_METHOD	BIO_METHOD_TITLE
BE101A	PADEP Rapid Non Tidal Stream Bio-Assessment Protocol
BE101B	PADEP Rapid Non Tidal Stream Bio-Assessment Protocol With Replication
BE102	The NYSDEC Non Tidal Stream Biomonitoring- Kick Sample Protocol
BE103	Maryland Biological Stream Survey Non Tidal Bioassessment Protocol
BE104	Maryland Core Trend Stream Non Tidal Bioassessment Protocol
	VADEQ Rapid Non Tidal Stream Bio-Assessment Protocol: Single-Habitat Method-
BE105	Family Level Ids
	VADEQ Rapid Non Tidal Stream Bio-Assessment Protocol: Single-Habitat Method,
BE105G	Genus Level Ids
	VADEQ Rapid Non Tidal Stream Bio-Assessment Protocol: Multi- Habitat Method
BE106	Family Level Ids
	VADEQ Rapid Non Tidal Stream Bio-Assessment Protocol: Multi- Habitat Method-
BE106G	Genus Level Ids
BE107	WVDEP Modified EPA RBP II, Non Tidal Stream Single Habitat Protocol
	WVDEP Modified EPA RBP II, Non Tidal Stream Single Habitat-200 Count
BE107B	Subsample
BE108	Mid-Atlantic Coastal Streams Method For Non Tidal Streams
BE109	WVDEP EPA RBP II, Multi Habitat Protocol For Non Tidal Streams
BE110	SRBC Rapid Bioassessment Protocol (RBP) III For Non Tidal Streams
BE111	Montgomery County-Unspecified Non Tidal Streams Assessment Protocol
	Fairfax County-RBP For Non Tidal Streams In Piedmont/Triassic Physiographic
BE112	Provinces
	Fairfax County-RBP For Non Tidal Streams In Coastal Plain Physiographic
BE113	Provinces

BIO_METHOD	BIO_METHOD_TITLE
BE114	ICPRB Quantitative Non Tidal Streams Benthic Assessment
BE115	ICPRB Qualitative Non Tidal Streams Benthic Assessment Protocol
BE116	EPA Wadeable Streams Assessment Protocol For Non Tidal Streams
BE117	District Of Columbia-Unspecified Non-Tidal Wadable Stream Assessment Method
BE118	Prince Georges County-MBSS Compliant Non-Tidal Stream Assessment Protocol
BE119	USFS Non Tidal Stream Assessment Protocol
BE120	The NYSDEC Non Tidal Streams Biomonitoring- Jab Sample Protocol
	Loudon County Single Habitat (Riffle) Stream Assessment Protocol For Non Tidal
BE121	Streams
BE122	District Of Columbia-In-house Non Tidal Streams Assessment Protocol
BE123	VCU Non Tidal Stream Assessment Protocol
BE1240	EPA EMAP-Other Assessment Protocol For Non Tidal Streams
BE124P	EPA EMAP-Pool Assessment Protocol For Non Tidal Streams
BE124R	EPA EMAP-Riffle Assessment Protocol For Non Tidal Streams
BE125A	USGS-RTH-No snag Assessment Protocol For Non Tidal Streams
BE125B	USGS-RTH-Snag Assessment Protocol For Non Tidal Streams
BM201	Versar Tidal Benthic Biomass Determination Protocol
BM202	Versar Tidal Benthic Biomass Estimation Protocol
BM203	ODU Tidal Benthic Biomass Determination Protocol
BM204	Versar Tidal Benthic Group Biomass Determination Protocol
BE201	Versar Tidal Benthic Taxa Enumeration Protocol
BE202	ODU Tidal Benthic Taxa Enumeration Protocol
BE203	VIMS Generalized Tidal Benthic Taxa Enumeration Protocol
BM101	Versar Mesozooplankton Biomass Determination Protocol-1984 To 1998
BM101B	Versar Mesozooplankton Biomass Estimation Protocol- 1999 To 2002
BM102	ODU Mesozooplankton Biomass
BV101	Versar Mesozooplankton Settled Volumes
JF101	Versar Gelatinous Zooplankton Enumeration Protocol- 1984- July 87
JF102	Versar Gelatinous Zooplankton Enumeration Protocol- August 1987 -2002
JF103	ODU Gelatinous Zooplankton Enumeration Method
MI101	MSU/ANS Microzooplankton Enumeration Method
MI102	ODU Microzooplankton Enumeration Method
MI103	MSU/ANS Microzooplankton Whole Water Sample Enumeration Method
MZ101A	Versar Mesozooplankton Enumeration Method-1984 To 1989
MZ101B	Versar Mesozooplankton Enumeration Method-1990 To 2002
MZ101C	Versar Mesozooplankton Small Organism Screen Enumeration Method- 1998-2002
MZ102	ODU Mesozooplankton CVS Enumeration Method
MZ102B	ODU Mesozooplankton Modified CVS Enumeration Method
MZ103	ODU Mesozooplankton Henson-Stemple Enumeration Method
PD101	MSU/ANS Primary Production Estimation Method
PD102	ODU Primary Production Estimation Method
PH101	MSU/ANS Phytoplankton Enumeration Method
PH102	ODU Phytoplankton Enumeration Method
PH102M	ODU Phytoplankton Enumeration Method-2005 Modification
PH103	Uniform Chesapeake Bay Program Phytoplankton Enumeration Method
PP101	ODU Picoplankton Enumeration Method
PP102	MSU/ANS Picoplankton Enumeration Method

Table C-24. Non Tidal Stream Habitat Condition Assessment Methods (HAB METHOD).

The HAB_METHOD codes identify methods for field evaluation of non-tidal stream habitat conditions. Currently accepted HAB_METHODS designations are as follows:

HAB_METHOD HAB_METHOD_TITLE

- HAB101 EPA Rapid Habitat Assessment Protocol
- HAB102 Montgomery County-Unspecified Protocol
- HAB103 Fairfax County-RSAT And Modified RBP For Piedmont/Triassic Physiographic Provinces
- HAB104 Fairfax County-RSAT And Modified RBP For Coastal Plain Physiographic Provinces
- HAB105 MACS Workgroup Modified EPA Rapid Habitat Assessment Protocol
- HAB106 Virginia Commonwealth University Fast Habitat Assessment
- HAB107 Virginia Commonwealth University

Table C-25. Sediment and Water Quality Parameter Methods (WQ METHOD or SED METHOD).

The WQ_METHOD or SED_METHOD codes identify methods for field or laboratory evaluation of sediment or water quality parameters. Currently accepted WQ_METHOD or SED_METHOD designations are as follows:

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
ACIDITY	L01	Acidity; Titrimetric
AL	L01	Total Aluminum; Atomic Emission Spectrometric
ANC	L01	Acid Neutralizing Capacity
ANC	L02	Acid Neutralizing Capacity
ANC	L03	Acid Neutralizing Capacity, Unspecified Lab Method
AS	L01	Total Arsenic Atomic Absorption Furnace Technique
ATEMP	F02	Air Temperature, Unspecified Field Method
BATT	NA	Battery Voltage
BIOSI	L01	Particulate Biogenic Silica
BOAT_SPEED	NA	Boat Speed In Knots
BOD20F	L01	20 Day BOD; Filtered
BOD20W	L01	20 Day BOD; Unfiltered
BOD5F	L01	5-Day Biochemical Oxygen Demand (Filtered)
BOD5W	L01	5-Day Biochemical Oxygen Demand
CA	L01	Calcium
CAF	L01	Calcium, Wf, Direct AAS
CAF	L02	Metals, Wf, ICP-AES
CD	L01	Total Cadmium; Atomic Emission Spectrometric
CDOM_440	L01	Dissolved Organic Matter Absorption Coefficient (Gelbstoff)
CDOM_SLOPE	L01	Slope Of CDOM Absorption Coefficient Spectrum (400 To 500 Nm)
CHL_A	L01	Trichromatic Chlorophyll A
CHL_B	L01	Trichromatic Chlorophyll B
CHL_C	L01	Trichromatic Chlorophyll C
CHLA	F01	Fluorometric Chlorophyll Using Probe
CHLA	L01	Monochromatic; Spectrophotometric
CHLA	L02	Monochromatic; Spectrophotometric
CHLA	L03	Fluorometric; In-Vitro Chlorophyll A
CLAY	L01	Sediment Clay Percentage, Folk Sediment Grain Size Analysis Protocol
CLF	L01	Chloride Filtered
CLF	L02	Chloride Filtered-Determination Of Inorganic Anions By Ion Chromatography
CLW	L01	Titrimetric; Mercuric Nitrate

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
CLW	L02	Total Chloride By Ion Chromatography
CLW	L03	Total Chloride By Automated Colorimetry - Automated Ferricyanide Aii
COD	L01	Titrimetric; Mid-Level
COD	L02	Titrimetric; High Level For Saline Waters
COD	L03	Colorimetric; Automated Or Manual
COLOR	L01	Visual Comparison Do Color Disc
CR	L01	Total Chromium: Atomic Emission Spectrometric
CU	L01	Total Copper: Atomic Emission Spectrometric
DCA	L01	Dissolved Metals - Calcium, Magnesium, Potassium & Sodium
DCU	101	Dissolved Copper
DIC	L01	Dissolved Inorganic Carbon
DIN	D01	Database Calculated DIN - Method 1
DIN	D01A	Database Calculated DIN - Method 1 – MDI
DIN	D01B	Database Calculated DIN - Method 1 - 1/2 MDI
DIN	D01D	Database Calculated DIN - Method 1
DIN	D02	Database Calculated DIN - Method 2
DIN		Database Calculated DIN - Method 2 – MDI
DIN	D02R	Database Calculated DIN - Method 2 - 1/2 MDI
DIN	D02D	Database Calculated DIN - Method 2
DO	F01	In-Situ Membrane Electrode
DO	F02	Dissolved Oxygen
DO	F03	Dissolved Oxygen: Modified Winkler
DO	F04	In-Situ Dissolved Oxygen: Optical Do Probe
DO	F05	Dissolved Oxygen, Specific Conductance, Unspecified Field Method
DO SAT M	D01	Database Calculated DO SAT = Method 1
DO SAT P	F01	Do Relative To Theoretical Value At Saturation (%)
		Dissolved Oxygen Percent Saturation, Specific Conductance, Unspecified Field
DO SAT P	F05	Method
DOC	L01	Combustion Infrared Method
DOC	L02	Wet Oxidation Method
DOC	L03	UV Or Heated Persulfate Oxidation
DOC	L04	Doc, 0. 45u Silver, Persulfate LR
DON	D01	Database Calculated DON - Method 1
DON	D01A	Database Calculated DON - Method 1 – MDL
DON	D01B	Database Calculated DON - Method 1 - 1/2 MDL
DON	D01D	Database Calculated DON - Method 1
DON	D02	Database Calculated DON - Method 2
DON	D02A	Database Calculated DON - Method 2 – MDL
DON	D02B	Database Calculated DON - Method 2 - 1/2 MDL
DON	D02D	Database Calculated DON - Method 2
DON	D03	Database Calculated DON - Method 3
DON	D03A	Database Calculated DON - Method 3 – MDL
DON	D03B	Database Calculated DON - Method 3 - 1/2 MDL
DON	D03D	Database Calculated DON - Method 3
DON	L01	Dissolved Organic Nitrogen, Unspecified Lab Method
DOP	D01	Database Calculated DOP - Method 1
DOP	D01A	Database Calculated DOP - Method 1 – MDL
DOP	D01B	Database Calculated DOP - Method 1 - 1/2 MDL
DOP	D01D	Database Calculated DOP - Method 1
DZN	L01	Dissolved Zinc
EPAR_S	F01	EPAR At Surface
EPARD_Z	F01	In-Situ; Light Sensor Down; Upwelling Par
EPARU_Z	F01	In-Situ; Light Sensor Up; Down welling Par
FCOLI_C	L02	Fecal Coliform Membrane Filter; M-FC Medium

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
FCOLI_M	L01	Fecal Coliform - EC Medium; MPN
FCOLI M	L03	Fecal Coliform-Direct Test; A-1 Medium
FE_M	L01	Total Iron; Phenanthroline Method
FE M	L02	Total Iron: Atomic Emission Spectrometric
FEU	L02	Total Iron: Atomic Emission Spectrometric
FE U	L03	Metals, Wf. ICP-AES
FLOW AVG	F01	Stream flow: Mean Daily
FLOW INS	F01	Stream flow: Instantaneous
FLOW INS	F02	Stream flow: Instantaneous, Unspecified Field Method
FLUORESCENCE	F01	Eluorometric Insitu Probe
FS	101	Fixed Solids
FSS	101	Fixed Suspended Solids
HARDNESS	F01	Unspecified Field Method
HARDNESS	101	Titrimetric [•] EDTA
HARDNESS	102	Colorimetric: Automated EDTA
HARDNESS	103	Unspecified Laboratory Method
HG	101	Total Mercury: Automated Cold Vanor Technique
IBOD5E		Carbonaceous Bod5: Inhibited: Eiltered
IBOD5W		Carbonaceous Bod5; Inhibited; Enfiltered
	LUI	Sodimont Interstitial Salinity, Army Corp Of Engineers Sodimont Crain Size
ΙΛΖΤΙΛΙ	102	Analysis Protocol
INT JAL	101	Dotassium
K	102	Metals - Calcium Magnesium Potassium & Sodium
KD	L02 D01	Database Calculated Kd SAV 2 Doint Method
KD	E01	Light Attonuation
KD KE		Dotassium W/f Diroct AAS
	L01	ruidassiulli, Wi, Dileci AAS Kurtasis Ealk Sadimant Crain Siza Analysis Dratasal
MEANDIAM		Moan Sodimont Diamotor Folk Sodimont Grain Sizo Analysis Protocol
		Shallow Water Measured Donth Method
		Modian Sodimont Diamotor Army Corn Of Engineers Sodimont Grain Size Analysis
	102	Directorol
	103	Median Sediment Diameter VIMS Undocumented
MGE	101	Magnesium
MGE	102	Magnesium Matals - Calcium Magnasium Potassium & Sodium
MN	101	Total Manganese Atomic Emission Spectrometric
	LUT	Sediment Moisture Percentage. Army Corn Of Engineers Sediment Grain Size
MOIST	102	Analysis Protocol
NAF	101	Sodium
NAF	102	Metals - Calcium Magnesium Potassium & Sodium
NH4F	101	Colorimetric: Automated Phenate (Indonhenol)
NH4F	102	Colorimetric: Auto Salicylate-Hypochlorite
NH4F	103	Ammonium Nitrogen Unspecified Lab Method
NH4F	104	Ammonium Nitrogen, Filtered, Unspecified Lab Method 2
NH4W	101	Colorimetric: Automated Phenate (Indophenol)
NH4W	L02	Ammonium Nitrogen. Whole Water, Unspecified Lab Method
NH4W	L03	Ammonium Nitrogen, Whole Water, Unspecified Lab Method 2
NI	L01	Nickel By Inductively Coupled Plasma - Mass Spectrometry
NO23F	C01A	Calculated By Addition At Region VADEQ/NRO
NO23F	D01	Database Calculated NO23f - Method 1
NO23F	D01A	Database Calculated NO23f - Method 1 – MDL
NO23F	D01B	Database Calculated NO23f - Method 1 - 1/2
NO23F	D01D	Database Calculated NO23f - Method 1
NO23F	L01	Colorimetric; Automated Cadmium Reduction
NO23F	L02	Spectrophotometric; Manual Cadmium Reduction

PARAMETER METHOD SEDIMENTIVOQ_METHOD_ITTLE N023F L03 Enzymaic Nitrale Wethod N023W D01 Database Calculated N023w N023W D01A Database Calculated N023w N023W D01B Database Calculated N023w N023W D01D Database Calculated Cadnium Reduction N023W L01 Colorimetric: Cadamium Reduction N023W L02 Manual: Spectrophotometric: Cadmium Reduction N024W L03 Dissolved Nitre By Ion Chromatography N02F L04 Automated: Colorimetric: Diazolization N02F L03 Dissolved Nitre By Ion Chromatography N02F L04 Nutrients, Wr. Colorimetric: Diazolization N02W L03 Total Nitrife By Ion Chromatography N02F L04 Automated: Colorimetric: Diazolization N02W L03 Total Nitrife By Ion Chromatography N03F D01A Database Calculated N03F Method 1 N03F D01A Database Calculated N03F Method 1 N03F D01B Databases Calculated N03F Method	REPORTING_	SEDIMENT/WQ_	
N023F L03 Enzymatic Nitrate Method N023W D01A Database Calculated N023w - Method 1 - MDL N023W D01A Database Calculated N023w - Method 1 - 112 MDL N023W D01B Database Calculated N023w - Method 1 - 112 MDL N023W D01D Database Calculated N023w - Method 1 N023W L01 Colorimetric, Automated Cadmium Reduction N023W L03 Mitrate-Nitric, Warolonentric, Cadmium Reduction N024F L01 Automated, Colorimetric, Dazotization N024F L03 Dissolved Nitrite By Ion Chromatography N024F L03 Dissolved Nitrite By Ion Chromatography N024F L03 Total Nitrite By Ion Chromatography N024F L03 Total Nitrite By Ion Chromatography N024F L03 Total Nitrite By Ion Chromatography N024F D01 Database Calculated N037 - Method 1 N024F D01 Database Calculated N037 - Method 1 N035F D01D Database Calculated N037 - Method 1 N035F D01D Database Calculated N037 - Method 1 <	PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
NQ23W D01 Database Calculated NQ23w Method 1 – MDL NQ23W D01B Database Calculated NQ23w - Method 1 – 1/2 MDL NQ23W D01D Database Calculated NQ23w - Method 1 NQ23W L01 Colormetric: Automated Cadmium Reduction NQ23W L02 Manual: Spectrophotometric: Diazolization NQ23W L03 Nitrate Nitrie, Whole Water, Unspecified Lab Method NQ2F L01 Automated: Colorimetric: Diazolization NQ2F L02 Manual: Spectrophotometric: Diazolization NQ2W L01 Automated: Colorimetric: Diazolization NQ2W L03 Total Nitrite By Ion Chromatography NQ2W L03 Total Nitrite By Ion Chromatography NQ3F D01 Database Calculated N037 - Method 1 - MDL NQ3F D01B Database Calculated N037 - Method 1 - MDL NQ3F D01B Database Calculated N037 - Method 1 - MDL NQ3F D01B Database Calculated N037 - Method 1 - MDL NQ3F D01B Database Calculated N037 - Method 1 - MDL NQ3F D01B Database Calculated N037	NO23F	L03	Enzymatic Nitrate Method
NO23W D01A Database Calculated NO23w - Method 1 - I/2 MDL NO23W D01D Database Calculated NO23w - Method 1 - I/2 MDL NO23W L01 Colorimetric: Automated Cadmium Reduction NO23W L02 Manual: Spectrophotometric: Cadmium Reduction NO23W L03 Nitrate-Nitrite. Whole Water, Unspecified Lab Method NO2F L01 Automated: Colorimetric: Diazolization NO2F L02 Manual: Spectrophotometric: Diazolization NO2F L04 Nutrients, Wr. Colorimetric: Diazolization NO2F L04 Nutrients, Wr. Colorimetric: Diazolization NO2W L03 Total Nitrite By Ion Chromatography NO2W L03 Total Nitrite By Ion Chromatography NO2W L03 Total Nitrite By Ion Chromatography NO3F D01 Database Calculated NO3f - Method 1 NO3F D01A Database Calculated NO3f - Method 1 NO3F D01D Database Calculated NO3f - Method 1 NO3F D01D Database Calculated NO3* - Method 1 NO3F D01D Database Calculated NO3* - Method 1	NO23W	D01	Database Calculated NO23w
NQ23W D01B Database Calculated NQ23w - Method 1 NQ23W L01 Calculated NQ23w - Method 1 NQ23W L01 Colorimetric: Automated Cadmium Reduction NQ23W L02 Manual: Spectrophotometric: Cadmium Reduction NQ23W L03 Ntrate-Nitrite, Whole Water, Unspecified Lab Method NQ2F L01 Automated: Colorimetric: Diazolization NQ2F L03 Dissolved Nitrite By Ion Chromatography NQ2F L04 Nutrients, Wr, Colorimetric: Diazolization NQ2W L01 Automated: Colorimetric: Diazolization NQ2W L02 Manual: Spectrophotometric: Diazolization NQ2W L03 Total Nitrite By Ion Chromatography NQ3F D01 Database Calculated N03F Method 1 NQ3F D01A Database Calculated N03F Method 1 NQ3F D01B Database Calculated N03F Method 1 NQ3F L01 Nitrate By Ion Chromatography NQ3F L01 Nitrate By Ion Chromatography NQ3F D01B Database Calculated N03F Method 1 NQ3F L01	NO23W	D01A	Database Calculated NO23w - Method 1 – MDL
NO23W D01D Database Calculated NO23w - Method 1 NO23W L01 Colorimetric: Automated Cadmium Reduction NO23W L03 Nitrate-Nitrite, Vinoie Water, Unspecified Lab Method NO2F L01 Automated: Colorimetric: Diazoitzation NO2F L02 Manual: Spectrophotometric: Diazoitzation NO2F L03 Dissolved Nitrite By Ion Chromatography NO2F L04 Nutrients, Wr. Colorimetric: Diazoitzation NO2F L04 Nutrients, Wr. Colorimetric: Diazoitzation NO2W L02 Manual: Spectrophotometric: Diazoitzation NO2W L03 Total Nitrite By Ion Chromatography NO3F D01 Database Calculated N03f - Method 1 N03F D01A Database Calculated N03f - Method 1 N03F D01D Database Calculated N03f - Method 1 N03F L01 Nitrate-Rifered, Unspecified Lab Method 2 N03F L02 Nitrite, Filtered, Unspecified Lab Method 1 N03F L03 Nitrite, Filtered, Unspecified Lab Method 1 N03W D01A Database Calculated N03w - Method 1	NO23W	D01B	Database Calculated NO23w - Method 1 - 1/2 MDL
NO23W L01 Colorimetric: Automated Cadmium Reduction N023W L02 Manual: Spectrophotometric: Diazottation N02F L01 Automated: Colorimetric: Diazottation N02F L03 Dissolved Nitrite By Ion Chromatography N02F L03 Dissolved Nitrite By Ion Chromatography N02F L04 Nutrients, Wr. Colorimetric: Diazottation N02F L04 Nutrients, Wr. Colorimetric: Diazottation N02W L03 Total Nitrite By Ion Chromatography N02W L03 Total Nitrite By Ion Chromatography N03F C01 Calculated N03F (Submitted To CBPO) N03F D01A Database Calculated N03F Method 1 - MDL N03F D01B Database Calculated N03F Method 1 - MDL N03F D01B Database Calculated N03F Method 1 N03F L01 Nitrate By Ion Chromatography N03F L03 Nitrite, Filtered, Unspecified Lab Method 2 N03F L03 Nitrite, Filtered, Unspecified Lab Method 1 N03F L03 Nitrite, Filtered, Unspecified Lab Method 1 N03W </td <td>NO23W</td> <td>D01D</td> <td>Database Calculated NO23w - Method 1</td>	NO23W	D01D	Database Calculated NO23w - Method 1
NQ23W L02 Manual: Spectrophotometric: Cadmium Reduction NQ2F L01 Automated: Colorimetric: Diazolization NQ2F L03 Disolved Nitrite By Ion Chromatography NQ2F L04 Nutrients: Wi: Colorimetric: Diazolization NQ2F L04 Nutrients: Wi: Colorimetric: Diazolization NQ2F L04 Nutrients: Wi: Colorimetric: Diazolization NQ2W L01 Automated: Colorimetric: Diazolization NQ2W L03 Total Nitrile By Ion Chromatography NQ3F D01 Database Calculated N03F Method 1 NQ3F D01A Database Calculated N03F Method 1 NQ3F D01B Database Calculated N03F Method 1 NQ3F D01D Database Calculated N03F Method 1 NQ3F D01D Database Calculated N03F Method 1 NQ3F L01 Nitrite Filtered, Unspecified Lab Method 1 NQ3F L02 Nitrite, Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite, Filtered, Unspecified Lab Method 1 NQ3W D01D Database Calculated N03w - Method 1	NO23W	L01	Colorimetric; Automated Cadmium Reduction
NQ23W L03 Nitrate-Niirlie, Whole Waler, Unspecified Lab Method NQ2F L01 Automated; Colorimetric: Diazolization NQ2F L03 Dissolved Niirlie By Ion Chromatography NQ2F L04 Nutrients, Wr. Colorimetric: NQ2W L01 Automated; Colorimetric: NQ2W L01 Automated; Colorimetric: NQ2W L03 Total Niirlie By Ion Chromatography NQ2W L03 Total Niirlie By Ion Chromatography NQ3F C01 Calculated NO3F (Submitted To CBPO) NQ3F D01 Database Calculated NO3F Method 1 NQ3F D01B Database Calculated NO3F Method 1 NQ3F D01B Database Calculated NO3F Method 1 NQ3F L01 Nitrate-Filtered, Unspecified Lab Method 1 NQ3F L01 Nitrate-Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite-Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite-Filtered, Unspecified Lab Method 1 NQ3W D01 Database Calculated NQ3W Method 1 NQ3W D01B <t< td=""><td>NO23W</td><td>L02</td><td>Manual; Spectrophotometric; Cadmium Reduction</td></t<>	NO23W	L02	Manual; Spectrophotometric; Cadmium Reduction
NQ2F L01 Automated: Colorimetric: Diazolization NQ2F L02 Manual: Spectrophotometric: Diazolization NQ2F L04 Nutrients, WI, Colorimetric: Diazolization NQ2W L01 Automated: Colorimetric: Diazolization NQ2W L02 Manual: Spectrophotometric: Diazolization NQ2W L03 Total Nitrie By Ion Chromatography NQ3F C01 Calculated NQ3F NQ3F D01 Database Calculated NQ3F Method 1 NQ3F D01B Database Calculated NQ3F Method 1 NQ3F D01B Database Calculated NQ3F Method 1 NQ3F D01D Database Calculated NQ3F Method 1 NQ3F L01 Nitrate By Ion Chromatography NQ3F L01 Nitrate By Ion Chromatography NQ3F L02 Nitrate By Ion Chromatography NQ3F L03 Nitrate By Ion Chromatography NQ3W D01 Database Calculated NQ3W Method 1 NQ3W D01 Database Calculated NQ3W Method 1 NQ3W D01 Database Calculated NQ3W Method 1 <td< td=""><td>NO23W</td><td>L03</td><td>Nitrate+Nitrite, Whole Water, Unspecified Lab Method</td></td<>	NO23W	L03	Nitrate+Nitrite, Whole Water, Unspecified Lab Method
NQ2F L02 Manual: Spectrophotometric: Diazotization NQ2F L03 Dissolved Nitrite By Ion Chromatography NQ2W L04 Nutrients, Wr. Colorimetric NQ2W L02 Manual: Spectrophotometric: Diazotization NQ2W L03 Total Nitrite By Ion Chromatography NQ3F C01 Calculated NQ3F. Method 1 NQ3F D01 Database Calculated NQ3F. Method 1 NQ3F D01 Database Calculated NQ3F. Method 1 NQ3F D01B Database Calculated NQ3F. Method 1 NQ3F D01D Database Calculated NQ3F. Method 1 NQ3F D01D Database Calculated NQ3F. Method 1 NQ3F L01 Nitrite, Filtered, Unspecified Lab Method 2 NQ3F L02 Nitrite, Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite, Filtered, Unspecified Lab Method 1 NQ3W D01A Database Calculated NQ3W MDL NQ3W D01B Database Calculated NQ3W Method 1 NQ3W D01B Database Calculated NQ3W MDL NQ3W D01D Database Calculated NQ3W Method 1 NQ3W D01B Database Calculated NQ3W Method 1 NQ3W D011 Total Nitrite By Ion Chromatography	NO2F	L01	Automated; Colorimetric; Diazotization
NQ2F L03 Dissolved Nitrite by Ion Chromatography NQ2F L04 Nutrients, Wr, Colorimetric: Diazotization NQ2W L01 Automated: Colorimetric: Diazotization NQ2W L03 Total Nitrite By Ion Chromatography NQ3F C01 Calculated NQ3F (Submitted To CBPO) NQ3F D01A Database Calculated NQ3F - Method 1 NQ3F D01A Database Calculated NQ3F - Method 1 NQ3F D01B Database Calculated NQ3F - Method 1 NQ3F D01D Database Calculated NQ3F - Method 1 NQ3F D01D Database Calculated NQ3F - Method 1 NQ3F L01 Nitrate By Ion Chromatography NQ3F L02 Nitrite, Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite, Filtered, Unspecified Lab Method 1 NQ3W D01 Database Calculated NQ3w - Method 1 NQ3W D01 Database Calculated NQ3w - Method 1 NQ3W D01D Database Calculated NQ3w - Method 1 NQ3W <	NO2F	L02	Manual; Spectrophotometric; Diazotization
NQ2F L04 Nutrinets, Wf, Colorimetric NQ2W L01 Automatel; Colorimetric; Diazolization NQ2W L02 Manual; Spectrophotometric; Diazolization NQ2W L03 Total Nitrite By Ion Chromatography NQ3F C01 Database Calculated NO3F - Method 1 NQ3F D01 Database Calculated NO3F - Method 1 NQ3F D01B Database Calculated NO3F - Method 1 NQ3F D01D Database Calculated NO3F - Method 1 NQ3F L01 Nitrite, Filtered, Unspecified Lab Method NQ3F L02 Nitrite, Filtered, Unspecified Lab Method 1 NQ3F L03 Nitrite, Filtered, Unspecified Lab Method 1 NQ3W D01A Database Calculated NO3W - Method 1 NQ3W D01A Database Calculated NO3W - Method 1 NQ3W D01B Database Calculated NO3W - Method 1 NQ3W D01A Database Calculated NO3W - Method 1 NQ3W D01B Database Calculated NO3W - Method 1 NQ3W D01A Database Calculated NO3W - Method 1 NQ3W D01A Database Calculated NO3W - Method 1 NQ3W D	NO2F	L03	Dissolved Nitrite By Ion Chromatography
NQ2WL01Automated: Colorimetric: DiazotizationNQ2WL03Total Nitrite By Ion ChromatographyNQ3FC01Calculated NQ3F (Submitted To CBPO)NQ3FD01Database Calculated NQ3F - Method 1NQ3FD01ADatabase Calculated NQ3F - Method 1NQ3FD01ADatabase Calculated NQ3F - Method 1NQ3FD01DDatabase Calculated NQ3F - Method 1NQ3FD01DDatabase Calculated NQ3F - Method 1NQ3FL01Nitrate By Ion ChromatographyNQ3FL02Nitrite, Filtered, Unspecified Lab Method 2NQ3FL03Nitrite, Filtered, Unspecified Lab Method 2NQ3FL03Nitrite, Filtered, Unspecified Lab Method 2NQ3WD01Database Calculated NQ3W - Method 1NQ3WD01ADatabase Calculated NQ3W - Method 1NQ3WD01BDatabase Calculated NQ3W - Method 1NQ3WD01DDatabase Calculat	NO2F	L04	Nutrients, Wf, Colorimetric
NO2WL02Manual: Spectrophotometric: DiazotizationNO2WL03Total Nitrite By Ion ChromatographyNO3FD01Database Calculated NO3F (submitted To CBPO)NO3FD01ADatabase Calculated NO3F. Method 1NO3FD01BDatabase Calculated NO3F. Method 1 - MDLNO3FD01DDatabase Calculated NO3F. Method 1NO3FD01DDatabase Calculated NO3F. Method 1NO3FD01DDatabase Calculated NO3F. Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab MethodNO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3WD01DDatabase Calculated NO3W - Method 1NO3WD01DData	NO2W	L01	Automated; Colorimetric; Diazotization
NO2WL03Total Nitrie By Ion ChromatographyNO3FC01Calculated NO3F (Submitted To CBPO)NO3FD01Database Calculated NO3F - Method 1NO3FD01ADatabase Calculated NO3F - Method 1NO3FD01BDatabase Calculated NO3F - Method 1NO3FD01DDatabase Calculated NO3F - Method 1NO3FD01DDatabase Calculated NO3F - Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab Method 2NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3WD01Database Calculated NO3W - Method 1NO3WD01BDatabase Calculated NO3W - Method 1NO3WD01DDatabase Calculated NO3W - Method 1NO3WL01Total Lead: At	NO2W	L02	Manual; Spectrophotometric; Diazotization
NO3FC01Calculated NÓ3F (Submitted To CÉPO)NO3FD01Database Calculated NO3F Method 1NO3FD01ADatabase Calculated NO3F Method 1 - NDLNO3FD01BDatabase Calculated NO3F Method 1 - 1/2 MDLNO3FD01DDatabase Calculated NO3F Method 1NO3FD01DDatabase Calculated NO3F Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab Method 2NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3WD01Database Calculated NO3W - Method 1NO3WD01DDatabase Calculated NO3W - Method 1NO3WL01Total Kitrare Atomic	NO2W	L03	Total Nitrite By Ion Chromatography
NO3FD01Database Calculated NO3f - Method 1NO3FD01ADatabase Calculated NO3f - Method 1 - MDLNO3FD01BDatabase Calculated NO3f - Method 1NO3FD01DDatabase Calculated NO3f - Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab MethodNO3FL03Nitrite, Filtered, Unspecified Lab Method 2NO3WD01Database Calculated NO3w - Method 1NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1NO3WD01BDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Lead' Atomic Absorption: Furnace TechniquePCL01Particulate Carbon (Inorg rolpanic)PHF01In-Situ Electro	NO3F	C01	Calculated NO3F (Submitted To CBPO)
NO3FD01ADatabase Calculated NO3f - Method 1 - MDLNO3FD01BDatabase Calculated NO3f - Method 1 - 1/2 MDLNO3FD01DDatabase Calculated NO3f - Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab Method 2NO3WD01Database Calculated NO3w - Method 1NO3WD01Database Calculated NO3w - Method 1NO3WD01Database Calculated NO3w - Method 1NO3WD01BDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furrace TechniquePCL01Particulate CarbonPHF03Ph, Unspecified Field MethodPHL02Ph, Lab, AtuG Gass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Introgenic PhosphorusPNL01Particulate Introgenic PhosphorusPNL01 </td <td>NO3F</td> <td>D01</td> <td>Database Calculated NO3f - Method 1</td>	NO3F	D01	Database Calculated NO3f - Method 1
NO3FD01BDatabase Calculated NO3f - Method 1 - 1/2 MDLNO3FD01DDatabase Calculated NO3f - Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab Method 2NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DTotal Mitrate By Ion ChromatographyORPF01Orid Lead: Atomic Assorption: Furnace TechniquePCL01Particulate Carbon (norq-Organic)PHF02Electrode MethodPHF03Ph, Unspecified Iteld MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto	NO3F	D01A	Database Calculated NO3f - Method 1 – MDL
NO3FD01DDatabase Calculated NO3f - Method 1NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab MethodNO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DTotal Nitrate By Ion ChromatographyORPF01Insitu Electrode MethodPHF01Insitu Electrode MethodPHF01Insitu Electrode MethodPHF02Electrode MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass Electrode <tr< td=""><td>NO3F</td><td>D01B</td><td>Database Calculated NO3f - Method 1 - 1/2 MDL</td></tr<>	NO3F	D01B	Database Calculated NO3f - Method 1 - 1/2 MDL
NO3FL01Nitrate By Ion ChromatographyNO3FL02Nitrite, Filtered, Unspecified Lab Method 2NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DTotal Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph Ot Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Potriculate Inorganic CarbonPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate NitrogenPO4FL02Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate; Automated; Ascorbic AcidPO4FL04Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Phosphorus As P, Whole Wat	NO3F	D01D	Database Calculated NO3f - Method 1
NO3FL02Nitrite, Filtered, Unspecified Lab MethodNO3FL03Nitrite, Filtered, Unspecified Lab Method 1NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01Total Netate ReventorNO3WD01Total Lead: Atomic Absorption: Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHF03Ph, Unspecified Field MethodPHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic: SpectrophotometricPHEOL03Monochromatic: FluorometricPHEOL03Monochromatic: FluorometricPHEL01Particulate Inorganic CarbonPHL02Orthophosphate Manual; Ascorbic AcidPO4FL03Orthophosphate Manual; Ascorbic AcidPO4FL04Orthophosphate Phosphorus As P, Whole	NO3F	L01	Nitrate By Ion Chromatography
NO3FL03Nitrite, Filtered, Unspecified Lab Method 2NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic Ascorbic Acid; Single ReagentPO4FL03Orthophosphate: Automated; Ascorbic Acid; Single ReagentPO4FL04Orthophosphate: Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate: Automated; Ascorbic AcidPO4FL05 <td>NO3F</td> <td>L02</td> <td>Nitrite, Filtered, Unspecified Lab Method</td>	NO3F	L02	Nitrite, Filtered, Unspecified Lab Method
NO3WD01Database Calculated NO3w - Method 1NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPNL01Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate; Automated; Ascorbic AcidPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, U	NO3F	L03	Nitrite, Filtered, Unspecified Lab Method 2
NO3WD01ADatabase Calculated NO3w - Method 1 - MDLNO3WD01BDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg-Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic Ascorbic AcidPO4FL02Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate; Manual; Ascorbic Acid; Single ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Ortho	NO3W	D01	Database Calculated NO3w - Method 1
NO3WD01BDatabase Calculated NO3w - Method 1 - 1/2 MDLNO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic ActionPIPL01Particulate NitrogenPO4FL02Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Poccrite AcidPO4FL05Orthoph	NO3W	D01A	Database Calculated NO3w - Method 1 – MDL
NO3WD01DDatabase Calculated NO3w - Method 1NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic: SpectrophotometricPHEOL03Monochromatic: FluorometricPHEOL03Monochromatic: FluorometricPIPL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Manual; Ascorbic AcidPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL	NO3W	D01B	Database Calculated NO3w - Method 1 - 1/2 MDL
NO3WL01Total Nitrate By Ion ChromatographyORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIPL01Particulate NitrogenPO4FL03Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Wa	NO3W	D01D	Database Calculated NO3w - Method 1
ORPF01Oxidation Reduction PotentialPBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPIFL01Particulate Inorganic CarbonPIPL01Particulate Inorganic ChrosphorusPNL01Particulate NitrogenPO4FL03Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic Acid;PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4D01Database Calculated POC - Method 1POCD01Database Calculated POC	NO3W	L01	Total Nitrate By Ion Chromatography
PBL01Total Lead; Atomic Absorption; Furnace TechniquePCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPHEOL01Particulate Inorganic CarbonPIEL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate; Automated; Ascorbic Acid; Single ReagentPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1 <td< td=""><td>ORP</td><td>F01</td><td>Oxidation Reduction Potential</td></td<>	ORP	F01	Oxidation Reduction Potential
PCL01Particulate Carbon (Inorg+Organic)PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL02Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2POCD01Database Calculated POC - Method 1POC </td <td>PB</td> <td>L01</td> <td>Total Lead: Atomic Absorption: Furnace Technique</td>	PB	L01	Total Lead: Atomic Absorption: Furnace Technique
PHF01In-Situ Electrode MethodPHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIPL01Particulate Inorganic CarbonPIFL01Particulate Inorganic CarbonPIFL01Orthophosphate; Automate; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4D01Database Calculated POC - Method 1POCD01Database Calculated POC - Method 1 - MDLPOCD01BDatabase Calcul	PC	L01	Particulate Carbon (Inorg+Organic)
PHF02Electrode MethodPHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition - Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; SpectrophotometricPHEOL01Particulate Inorganic CarbonPICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc. 0. 45u Silver, Wet Oxidation	PH	F01	In-Situ Electrode Method
PHF03Ph, Unspecified Field MethodPHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPHEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate; Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FD1Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1<	PH	F02	Electrode Method
PHL01Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic; SpectrophotometricPHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPIEOL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate; Automated; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate; Automated; Ascorbic Acid; Two ReagentPO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01D	PH	F03	Ph. Unspecified Field Method
PHL02Ph, Lab, Auto Glass ElectrodePHEOL01Monochromatic: SpectrophotometricPHEOL02Monochromatic: SpectrophotometricPHEOL03Monochromatic: FluorometricPICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PH	L01	Ph Of Wet Deposition -Electrolytic Determination 600/4-86-024
PHEOL01Monochromatic: SpectrophotometricPHEOL02Monochromatic: SpectrophotometricPHEOL03Monochromatic: FluorometricPICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate; Automated; Ascorbic Acid; Two ReagentPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PH	L02	Ph. Lab. Auto Glass Electrode
PHEOL02Monochromatic; SpectrophotometricPHEOL03Monochromatic; FluorometricPICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1 - MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL01EPOC, CalculatedPOCL01EPOC, CalculatedPOCL01EPOC, CalculatedPOCL01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PHFO	101	Monochromatic: Spectrophotometric
PHEOL03Monochromatic; FluorometricPICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FD01Database Calculated POC - Method 1POCD01Database Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PHEO	L02	Monochromatic: Spectrophotometric
PICL01Particulate Inorganic CarbonPIPL01Particulate Inorganic PhosphorusPNL01Particulate Inorganic PhosphorusPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL03Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PHEO	L03	Monochromatic: Fluorometric
PIPL01Particulate Inorganic PhosphorusPNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL01Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FD01Database Calculated POC - Method 1POCD01Database Calculated POC - Method 1 – MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PIC	L01	Particulate Inorganic Carbon
PNL01Particulate NitrogenPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL01EPOC, CalculatedPOCL01ESoc, 0. 45u Silver, Wet Oxidation	PIP	L01	Particulate Inorganic Phosphorus
PO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4FL05Orthophosphate; Automated; Ascorbic AcidPO4FL01Orthophosphate; Automated; Ascorbic AcidPO4FD01Database Calculated POC - Method 1POCD01Database Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PN	101	Particulate Nitrogen
PO4FL02Ortho-P; Manual; Ascorbic Acid; Single ReagentPO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4F	L01	Orthophosphate: Automated: Ascorbic Acid
PO4FL03Orthophosphate Manual; Ascorbic Acid; Two ReagentPO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4F	102	Ortho-P: Manual: Ascorbic Acid: Single Reagent
PO4FL04Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab MethodPO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4F	103	Orthophosphate Manual: Ascorbic Acid: Two Reagent
PO4FL05Orthophosphate Phosphorus As P, Whole Water, Unspecified Lab Method 2PO4WL01Orthophosphate; Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01BDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4F	104	Orthophosphate Phosphorus As P. Whole Water Unspecified Lab Method
PO4WL01Orthophosphate: Automated; Ascorbic AcidPOCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4F	105	Orthophosphate Phosphorus As P. Whole Water, Unspecified Lab Method 2
POCD01Database Calculated POC - Method 1POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	PO4W	L01	Orthophosphate: Automated: Ascorbic Acid
POCD01ADatabase Calculated POC - Method 1 - MDLPOCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	POC	D01	Database Calculated POC - Method 1
POCD01BDatabase Calculated POC - Method 1 - 1/2 MDLPOCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	POC	D01A	Database Calculated POC - Method 1 – MDL
POCD01DDatabase Calculated POC - Method 1POCD01EPOC, CalculatedPOCL02Soc, 0. 45u Silver, Wet Oxidation	POC	D01B	Database Calculated POC - Method 1 - 1/2 MDI
POCD01EPOC, CalculatedPOCL02Soc. 0. 45u Silver, Wet Oxidation	POC	D01D	Database Calculated POC - Method 1
POC L02 Soc, 0. 45u Silver, Wet Oxidation	POC	D01E	POC. Calculated
	POC	L02	Soc, 0. 45u Silver, Wet Oxidation

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	Sediment/WQ method title
PON	D01	Database Calculated PON - Method 1
PON	D01A	Database Calculated PON - Method 1 – MDL
PON	D01B	Database Calculated PON - Method 1 - 1/2 MDI
PON	D01D	Database Calculated PON - Method 1
PD	D01D	Database Calculated PD - Method 1
DD		Database Calculated PP Method 1 MDI
רר חח		Database Calculated PP - Method 1 - MDL
		Database Calculated PP - Method 1
PP DD		Database Calculated PP - Method T
PP	LUT	Particulate Phosphorus; Semi-Automated; Direct
	1.00	Analysis Distance
	LUZ	Allalysis Plulucui
	FUI	IN-SILU Measurement with Prope
SALINITY	FU2	
SALINITY	F03	Calculated From SPCOND
SALINITY	F04	UNESCO '83 Calculation
SAND	L01	Sediment Percent Sand-Folk Sediment Grain Size Analysis Protocol
		Sediment Percent Sand-Army Corp Of Engineers Sediment Grain Size Analysis
SAND	L02	Protocol
SAND	L03	Sediment Percent Sand-VIMS Undocumented Method
SE	L01	Total Selenium; Atomic Absorption; Furnace Technique
SECCHI	F01	20 CM Secchi Depth
SECCHI	F02	30 CM Secchi Depth
SIF	L01	Colorimetric: Automated: Molvbdenum Blue
SIF	102	Spectrophotometric: Manual: Molybdosilicate
SIF	103	Silica: Atomic Absorption Spectrometry: Direct
SIF	1.04	Metals Wf ICP-AFS
SIGMA T	D01	Database Calculated Sigma T - Method 1
		Folk Sediment Crain Size Analysis Protocol
	L01	Dorcont Silt clay Folk Sodimont Crain Size Analysis Drotocol
		Percent Silt clay - FUR Seutheni Grain Size Analysis FTUUUU
	LU2	Percent Silt day -Army Colp OF Engineers Sediment Grain Size Analysis Protocol Decent Silt day MMS Undecompeted Method
SILICLAY	LU3	Percent Silt clay - vilvis unducumented Methodes Dive
SIW	LUI	Colorimetric; Automated; Molybdenum Blue
SIW	LU2	Spectrophotometric; Manual; Molybdosilicate
SIW	LO3	Silica By Inductively Coupled Plasma - Mass Spectrometry
SKEWNESS	L01	Folk Sediment Grain Size Analysis Protocol
SKEWNESS	L02	Army Corp Of Engineers Sediment Grain Size Analysis Protocol
SO4F	L01	Sulfate; Turbidimetric Method
SO4F	L02	Sulfate By Ion Chromatography
SO4F	L03	Automated Colorimetric; Methylthymol Blue
SO4F	L04	Sulfate By Ion Chromatography-Similar To 300. 0
SO4W	L01	Sulfate; Turbidimetric Method
SO4W	L02	Anions, Wf, IC
SORT	L01	Folk Sediment Grain Size Analysis Protocol
SPCOND	F01	In-Situ Specific Conductance At 25 C
SPCOND	F02	Specific Conductance At 25 C - Field Grab
SPCOND	F03	Specific Conductance Unspecified Field Method
SPCOND	F04	Specific Conductance, Unspecified Field Method 2
	104	Laboratory Measured Conductivity
	102	Specific Conductivity Lab. Auto Pridge
		Openine Conductivity, Law, Auto Druge Darcant Of Susnandad Sadimant Darticlas Dassing Through 0, 062 Mm Sieva
	D01	Dereant Of Suspended Sediment Particles Patsing Through V. 002 Will SIEVE
		Ferceni OI Suspended Sediment Dettides Dessing Through A.O. 0(2) Mar Cisus
SSC_FINE	LUI	Suspended Sediment Particles Passing Through A 0. 062 Mm Sleve
SSC_FINE	LUZ	Suspended Sediment Particles Passing Through A U. U62 Mim Sieve
SSC_SAND	L01	Suspended Sediment Particles Retained On A 0. 062 Mm Sieve

PARAMETER METHOD SEDIMENTWOQ_METHOD_ITTLE SSC_SC_NAID L02 Suspended Sediment Particles Retained On A 0. 062 Mm Sieve SSC_TOTAL L01 Gravimetric Fugarotian Method: Dried AI 90-105 SSC_TOTAL L02 Gravimetric Fugarotian Method: Dried AI 90-105 SSC_TOTAL L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L03 Total Sediment Concentration, Unspecified Lab Method TALK L03 Atkalinity, Unspecified Lab Method 2 TALK L03 Atkalinity, Unspecified Lab Method 2 TALK L04 Protocol Total Sediment Concent Army Corp Of Engineers Sediment Grain Size Analysis TC L02 Protocol Total Colfform Membrane Filter; M-FC Medium TCUL_PRE_CAL F01 Protocol Method 1 TDN D01A Database Calculated TDN - Method 1 TDN D01A Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 2 TDN D01D Database Calculated TDN - Method 2 TDN D01D Database Calculated TDN - Method 2 <	REPORTING_	SEDIMENT/WQ_	
SSC_SAND L02 Suspended Sediment Particles Relained On A 0. 062 Mm Sieve SSC_TOTAL L01 Total Sediment SSC_TOTAL L01 Gravimetric Filtration Method: Dried AI 90-105 SSC_TOTAL L02 Gravimetric Evaporation Method: Dried AI 90-105 SSC_TOTAL L02 Gravimetric Evaporation Method: Dried AI 90-105 SSC_TOTAL L02 Atkalinity: Unspecified Lab Method TALK L01 Atkalinity: Unspecified Lab Method 2 TALK L03 Atkalinity: Unspecified Lab Method 2 TCL L02 Total Sediment Carchore Probe Reading TCOLLC L02 Total Colform Membrane Filter: M-FC Medium TCOLLM L01 SLf. Fermentation Technique (MPN) TON D01A Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 2 TDN D01B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2	PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
SSC_TOTAL D01 Total Sediment SSC_TOTAL L01 Gravimetic Filtration Method: Dried At 90-105 SSC_TOTAL L02 Gravimetic Filtration Method: Dried At 90-105 SSC_TOTAL L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L02 Atkalinity, Unspecified Lab Method 2 Total Sediment Carbon - Army Corp Of Engineers Sediment Grain Size Analysis TC L02 Protocol TCOLL_C L02 Formentation Technique (MPN) TON D01 Database Calculated TDN - Method 1 TDN D01A Database Calculated TDN - Method 1 TON D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D0	SSC_SAND	L02	Suspended Sediment Particles Retained On A 0. 062 Mm Sieve
SSC_TOTAL L01 Gravimetric Filtration Method: Dried At 90-105 SSC_TOTAL L02 Gravimetric Evaporation Method: Dried At 90-105 Degrees C SSC_TOTAL L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L01 Alkalinity, Unspecified Lab Method 2 Total Suspended Sediment Concentration, Unspecified Lab Method 2 Total Sediment Carbon - Army Corp Of Engineers Sediment Grain Size Analysis TC L02 Total Collorn Membrane Filter, M+C Medium TCOLL_C L02 Total Collorn Membrane Filter, M+C Medium TCOLL_C L02 Total Collorn Membrane Filter, M+C Medium TON D01 Database Calculated TDN - Method 1 TDN D01 Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2	SSC_TOTAL	D01	Total Sediment
SSC_TOTAL L02 Gravimetric Evaporation Method: Dried Al 90-105 Degrees C SSC_TOTAL L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L01 Alkalinity: Tilimetric: Ph 4.5 TALK L02 Alkalinity: Unspecified Lab Method 2 Total Sediment Carbon- Army Corp Of Engineers Sediment Grain Size Analysis Total Sediment Carbon- Army Corp Of Engineers Sediment Grain Size Analysis TC L02 Protocol TCOLL_C L02 Total Coliform Membrane Filter, MFC Medium TCOLL_M L01 Std. Ferrentation Technique (MPN) TON D01 Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D01 Alkaline Persultate Wet Oxidation + EPA 353.2 Or EPA 353.4 TDN L01	SSC_TOTAL	L01	Gravimetric Filtration Method; Dried At 90-105
SSC_TOTAL L03 Total Suspended Sediment Concentration, Unspecified Lab Method TALK L01 Alkalinity: Titrimetric: Ph 4.5 TALK L02 Alkalinity: Unspecified Lab Method TALK L03 Alkalinity: Unspecified Lab Method TALK L03 Alkalinity: Unspecified Lab Method TCH_PRE_CAL F01 Protocol TCH_PRE_CAL F01 Precalibrated Fluorescence Probe Reading TCOLLC L02 Total Coliform Membrane Filter: M-FC Medium TCOLLM L01 Std. Fermentation Technique (MPN) TON D01A Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D02 Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 T	SSC_TOTAL	L02	Gravimetric Evaporation Method; Dried At 90-105 Degrees C
TALK L01 Alkalinity. Unspecified Lab Method TALK L02 Alkalinity. Unspecified Lab Method 2 TALK L03 Alkalinity. Unspecified Lab Method 2 TC L02 Protocol TCL_PRE_CAL F01 Precalibrated Fluorescence Probe Reading TCOLLC L02 Total Collform Membrane Filter: M-FC Medium TCOLLM L01 Std. Ferrentation Technique (MPN) TDN D01 Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D02A Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 1 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method	SSC_TOTAL	L03	Total Suspended Sediment Concentration, Unspecified Lab Method
TALK L02 Aklainity, Unspecified Lab Method TALK L03 Alkainity, Unspecified Lab Method 2 TOT L02 Protocol TCC L02 Protocol TCLL_PRE_CAL F01 Precalibrated Fluorescence Probe Reading TCOLL_C L02 Total Coliform Membrane Filter; M-FC Medium TCOLL_M L01 Sit. Fermeniation Technique (MPN) TON D01 Database Calculated TDN - Method 1 TDN D01A Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D02 Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN L02 Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4 TDN L02 Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365 TDP L03 Alkaline Persulfate Wet Oxidation + EPA 365. 3 TDP L04 Colorimetric; Automated; Ascorbic Acid TDP L05 Ma	TALK	L01	Alkalinity; Titrimetric; Ph 4. 5
TALK L03 Alkalinify, Unspecified Lab Melhod 2 Total Sediment Carbon - Army Corp Of Engineers Sediment Grain Size Analysis TC TC L02 Protocol TCOLL_C L01 Precalibrated Fluorescence Probe Reading TCOLL_M L01 Std. Fermentation Technique (MPN) TDN D01 Database Calculated TDN - Method 1 TDN D01A Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN L03 Total Disolved Nitrogen, Unspecified Lab Method TDN L03 Total Disolved Viet Oxidation + EPA 365. 10r EPA 365. TDP L03 Alkaline Persulfate Wel Oxidation + EPA	TALK	L02	Alkalinity, Unspecified Lab Method
Total Sédiment Carbon - Army Corp Of Engineers Sediment Grain Size AnalysisTCL02ProtocolTCOLL_PRE_CALF01Precalibrated Fluorescence Probe ReadingTCOLL_ML01Std. Fermentation Technique (MPN)TCOLL_MD01Database Calculated TDN - Method 1 - MDLTDND01Database Calculated TDN - Method 1 - MDLTDND01DDatabase Calculated TDN - Method 1 - MDLTDND01DDatabase Calculated TDN - Method 2 - MDLTDND02DDatabase Calculated TDN - Method 2 - MDLTDND02ADatabase Calculated TDN - Method 2 - MDLTDND02BDatabase Calculated TDN - Method 2 - MDLTDND02BDatabase Calculated TDN - Method 2 - MDLTDND02DDatabase Calculated TDN - Method 2 - MDLTDND02DDatabase Calculated TDN - Method 2 - MDLTDNL02Alkaline Persulfate Wel Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wel Oxidation + EPA 365. Tor EPA 365TDPL01Alkaline Persulfate Wel Oxidation + EPA 365. 3TDPL02Alkaline Persulfate Wel Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wel Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Nigester: Calorimetric: NitroTCL02Analysis ProtocolTKNFL03Colorimetric: NitroTDNL04Colorimetric: Aut	TALK	L03	Alkalinity, Unspecified Lab Method 2
TC L02 Protocol TCHL_PRE_CAL F01 Precalibrated Fluorescence Probe Reading TCOLL_C L02 Total Coliform Membrane Filter; M-FC Medium TCOLL_M L01 Std. Fermentation Technique (MPN) TDN D01 Database Calculated TDN - Method 1 TDN D01A Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN D02D Database Calculated TDN - Method 2 TDN L02 Alkaline Persulfate Wel Oxidation + EPA 353. 2 Or EPA 353. 4 TDN L03 Total Dissolved Nitrogen, Unspecified Lab Method TDP L03 Alkaline Persulfate Wel Oxidation + EPA 355. 3 TEPA 365. TDP L04 Colorimetric, Automated; Ascorbic Acid TDP L05 Block Digeston, Auromated; Ascorbic Acid TDP			Total Sediment Carbon- Army Corp Of Engineers Sediment Grain Size Analysis
TCHL_PRE_CAL F01 Precalibrated Fluorescence Probe Reading TCOLL_C L02 Total Coliform Membrane Filter, M-FC Medium TCOLL_M L01 Std. Fermentation Technique (MPN) TDN D01 Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01B Database Calculated TDN - Method 1 TDN D01D Database Calculated TDN - Method 1 TDN D02A Database Calculated TDN - Method 2 TDN D02A Database Calculated TDN - Method 2 TDN D02B Database Calculated TDN - Method 2 TDN L01 Alkaline Persulfate Wel Oxidation + EPA 353, 2 Or EPA 353, 4 TDN L02 Alkaline Persulfate Wel Oxidation + EPA 365, 1 or EPA 365 TDP L03 Alkaline Persulfate Wel Oxidation + EPA 365, 3 TDP L03 Alkaline Persulfate Wel Oxidation + EPA 365, 3 TDP L04 Colorimetric: Automated Ascorbic Acid	TC	L02	Protocol
TCOLL_CL02Total Coliform Membrane Filter: W-FC MediumTCOLLML01Std. Fermentation Technique (MPN)TOND01Database Calculated TDN - Method 1TDND01ADatabase Calculated TDN - Method 1TDND01BDatabase Calculated TDN - Method 1TDND01DDatabase Calculated TDN - Method 1TDND01DDatabase Calculated TDN - Method 1TDND02Database Calculated TDN - Method 2TDND02Database Calculated TDN - Method 2TDND02BDatabase Calculated TDN - Method 2TDND02BDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Solids; Garaviner; Dried Al 180 CTDSL01Total Solids; Garaviner; Dried Al 180 CTDSL01Total Sediment Inorganic: Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldah Nitrogen, Tittered, Unspecified Lab MethodTN <t< td=""><td>TCHL_PRE_CAL</td><td>F01</td><td>Precalibrated Fluorescence Probe Reading</td></t<>	TCHL_PRE_CAL	F01	Precalibrated Fluorescence Probe Reading
TCOLL_ML01Std. Fermentation Technique (MPN)TDND01Database Calculated TDN - Method 1TDND01ADatabase Calculated TDN - Method 1TDND01BDatabase Calculated TDN - Method 1TDND01DDatabase Calculated TDN - Method 1TDND01DDatabase Calculated TDN - Method 2TDND02Database Calculated TDN - Method 2TDND02Database Calculated TDN - Method 2TDND02BDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + EPA 355. 2 Or EPA 353. 4TDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL04Colorimetric: Automated Ascorbic AcidTDPL04Total Dissolved Solids: Gravimetric: Dried At 180 CTCL02Analysis ProtocolTKNFL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL03Colorimetric: Natomated Phenate (Indophenol)TKNFL04Total Kjeldah Nitrogen, Tiltered, Unspecified Lab MethodTKNFL03Colorimetric: Natomat	TCOLI_C	L02	Total Coliform Membrane Filter; M-FC Medium
TDND01Database Calculated TDN - Method 1TDND01ADatabase Calculated TDN - Method 1TDND01BDatabase Calculated TDN - Method 1TDND01DDatabase Calculated TDN - Method 1TDND02Database Calculated TDN - Method 2TDND02Database Calculated TDN - Method 2TDND02ADatabase Calculated TDN - Method 2TDND02ADatabase Calculated TDN - Method 2TDND02BDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDNL02Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 10TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTOSL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL02Aralysis ProtocolTKNFL03Colorimetric: Messler; Titrimetric Or PotentiometricTKNFL04Total Kjeldah Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Messler; Titrimetric Or Pot	TCOLI_M	L01	Std. Fermentation Technique (MPN)
TDND01ADatabase Calculated TDN - Method 1 – MDLTDND01BDatabase Calculated TDN - Method 11/2 MDLTDND01DDatabase Calculated TDN - Method 11TDND02Database Calculated TDN - Method 2- MDLTDND02ADatabase Calculated TDN - Method 2- MDLTDND02BDatabase Calculated TDN - Method 2- 1/2 MDLTDND02DDatabase Calculated TDN - Method 2- MDLTDND02DDatabase Calculated TDN - Method 2- MDLTDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + EPA 365. 10r EPA 365TDPL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldahi Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldahi Nitrogen, Filtered, Unspecified Lab MethodTKNFL04Total Kjel	TDN	D01	Database Calculated TDN - Method 1
TDND01BDatabase Calculated TDN - Method 1 - 1/2 MDLTDND01DDatabase Calculated TDN - Method 1TDND02Database Calculated TDN - Method 2TDND02ADatabase Calculated TDN - Method 2 - MDLTDND02BDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2 - 1/2 MDLTDND01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL01Alkaline Persulfate Wet Oxidation + EPA 355. 2 Or EPA 355.TDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365TDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01TKN Colorimetric: Automated Ascorbic AcidTDFL02Analysis ProtocolTKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Nessler: Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Nessler: Titrimetric Or PotentiometricTKNF	TDN	D01A	Database Calculated TDN - Method 1 – MDL
TDND01DDatabase Calculated TDN - Method 1TDND02Database Calculated TDN - Method 2 - MDLTDND02ADatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2 - 1/2 MDLTDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + EPA 355. 1 or EPA 355. 1TDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365.TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester: Colorimetric: NitroTKNFL03Colorimetric:Nessler: Titrimetric Or PolentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Naturated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Naturated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen,	TDN	D01B	Database Calculated TDN - Method 1 - 1/2 MDL
TDND02Database Calculated TDN - Method 2TDND02ADatabase Calculated TDN - Method 2 - MDLTDND02BDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tt. Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Phosphorus, Unspecified Lab MethodTDSL01Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL03Colorimetric: Nutomated Phenate (Indophenol)TKNFL04Total Kjeldah Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Nutomated Phenate (Indophenol)TKNFL04Total Kjeldah Nitrogen, Whole Water, Unspecified Lab MethodTKNFL03Colorimetric: Nutomated Phenate (Indo	TDN	D01D	Database Calculated TDN - Method 1
TDND02ADatabase Calculated TDN - Method 2 - MDLTDND02BDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2TDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Natomated Phenate (Indophenol)TKNFL03Colorimetric: Nessler: Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Nessler: Titrimetic Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNFL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNFL04Total Kjeldahl Nitrogen, Honege	TDN	D02	Database Calculated TDN - Method 2
TDND02BDatabase Calculated TDN - Method 2 - 1/2 MDLTDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. Tor EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids: Gravimetric: Dried At 180 CTCL02Analysis ProtocolTKNFL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTK	TDN	D02A	Database Calculated TDN - Method 2 – MDL
TDND02DDatabase Calculated TDN - Method 2TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated Ascorbic AcidTDPL05Block Digestion: Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids: Gravimetric: Dried A1 180 CTDRL02Analysis ProtocolTICL02Analysis ProtocolTKNFL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL03Colorimetric: Nationated Phenate (Indophenol)TKNFL03Colorimetric: Nationated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL03Colorimetric: Nationated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNWL03Colorimetric: Nationated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNWL03Colorimetric: Nationated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified	TDN	D02B	Database Calculated TDN - Method 2 - 1/2 MDL
TDNL01Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4TDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitragen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1 or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated; Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric: Dried At 180 CTOSL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester: Colorimetric; NitroTKNFL03Colorimetric: Nessler: Titrimetric Or PotentiometricTKNFL04Total Kjeldah Nitrogen, Filtered, Unspecified Lab MethodTKNWL02Semi-Automated Block Digester: Colorimetric; NitroTKNFL04Total Kjeldah Nitrogen, Whole Water, Unspecified Lab MethodTKNWL02Semi-Automated Block Digester: Colorimetric; NitroTKNWL03Colorimetric:Nessler: Titrimetic Or PotentiometricTKNWL04Total Kjeldah Nitrogen, Whole Water, Unspecified Lab MethodTKNWL03Colorimetric: Nessler: Titrimetic Or Inspecified Lab MethodTKNWL04Total Kjeldah Nitrogen, Whole Water, Unspecified Lab Metho	TDN	D02D	Database Calculated TDN - Method 2
TDNL02Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate ReductionTDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated; Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric: Dried At 180 C Total Sediment Inorganic Carbon - Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric: Automated Phenate (Indophenol)TKNFL03Colorimetric: Natomated Block Digester: ColorimetricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Automated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric: Automated Phenate (Indophenol)TKNWL03Colorimetric: Automated Block Digester: ColorimetricTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNWL03Colorimetric: Automated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTND01	TDN	L01	Alkaline Persulfate Wet Oxidation + EPA 353. 2 Or EPA 353. 4
TDNL03Total Dissolved Nitrogen, Unspecified Lab MethodTDPL01Alkaline Persulfate Wet Oxidation + EPA 365. 1or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric: Automated: Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric: Dried At 180 CTOSL01Tot. Dissolved Solids; Gravimetric: Dried At 180 CTOSL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL03Colorimetric: Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNFL03Colorimetric: Automated Block Digester: Colorimetric; NitroTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL03Colorimetric: Automated Block Digester: Colorimetric; NitroTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02Database Calculated TN - Method	TDN	L02	Alkaline Persulfate Wet Oxidation + Enzyme Catalyzed Nitrate Reduction
TDPL01Alkaline Persulfate Wet Oxidation + EPA365. 1or EPA 365TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric; Automated Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL03Colorimetric; Nessler; Totrimetric Or PotentiometricTKNFL03Colorimetric; Automated Phenate (Indophenol)TKNFL03Colorimetric; Naturated Phenate (Indophenol)TKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2<	TDN	L03	Total Dissolved Nitrogen, Unspecified Lab Method
TDPL02Alkaline Persulfate Wet Oxidation + EPA 365. 2TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric; Automated; Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 CTotal Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL03Colorimetric; Nationated Phenate (Indophenol)TKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Nutomated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric; Nutomated Phenate (Indophenol)TKNWL03Colorimetric; Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTNND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 2TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2	TDP	L01	Alkaline Persulfate Wet Oxidation + EPA365, 1or EPA 365
TDPL03Alkaline Persulfate Wet Oxidation + EPA 365. 3TDPL04Colorimetric; Automated; Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL03Colorimetric; Nessler; Colorimetric; NitroTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Nutomated Phenate (Indophenol)TKNFL03Colorimetric; Nutomated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL03Colorimetric; Nutomated Phenate (Indophenol)TKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTNND01Database Calculated TN - Method 1 – MDLTND01ADatabase Calculated TN - Method 1 – MDLTND01BDatabase Calculated TN - Method 2 – MDLTND02Database Calculated TN - Method 2 – MDLTND02ADatabase Calculated TN - Method 2 – MDLTND02BDatabase Calculated TN - Method 2 – MDLTND02DDatabase Calculated TN - Method 2 – MDLTND02DDatabase Calc	TDP	L02	Alkaline Persulfate Wet Oxidation + EPA 365. 2
TDPL04Colorimetric; Automated; Ascorbic AcidTDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Nessler; Titrimetric Or PotentiometricTKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02BDatabase Calculated TN	TDP	L03	Alkaline Persulfate Wet Oxidation + EPA 365. 3
TDPL05Block Digestion; Automated Ascorbic AcidTDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric: Nessler; Colorimetric; NitroTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Databas	TDP	L04	Colorimetric: Automated: Ascorbic Acid
TDPL06Total Dissolved Phosphorus, Unspecified Lab MethodTDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Natomated Phenate (Indophenol)TKNWL01TKN Colorimetric; Or PotentiometricTKNWL03Colorimetric: Automated Phenate (Indophenol)TKNWL01TKN Colorimetric; NitroTKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02D </td <td>TDP</td> <td>105</td> <td>Block Digestion: Automated Ascorbic Acid</td>	TDP	105	Block Digestion: Automated Ascorbic Acid
TDSL01Tot. Dissolved Solids; Gravimetric; Dried At 180 C Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric; Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen, Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 3	TDP	L06	Total Dissolved Phosphorus, Unspecified Lab Method
Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain SizeTICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric: Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02ADatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TDS	L01	Tot. Dissolved Solids: Gravimetric: Dried At 180 C
TICL02Analysis ProtocolTKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric;Nessler;Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01Database Calculated TN - Method 1TND01BDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3			Total Sediment Inorganic Carbon- Army Corp Of Engineers Sediment Grain Size
TKNFL01TKN Colorimetric; Automated Phenate (Indophenol)TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TIC	L02	Analysis Protocol
TKNFL02Semi-Automated Block Digester; Colorimetric; NitroTKNFL03Colorimetric; Nessler; Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02DDatabase Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2 - MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TKNF	L01	TKN Colorimetric: Automated Phenate (Indophenol)
TKNFL03Colorimetric;Nessler;Titrimetric Or PotentiometricTKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2TND02BDatabase Calculated TN - Method 2 - MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TKNF	102	Semi-Automated Block Digester: Colorimetric: Nitro
TKNFL04Total Kjeldahl Nitrogen, Filtered, Unspecified Lab MethodTKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 3	TKNF	103	Colorimetric:Nessler:Titrimetric Or Potentiometric
TKNWL01TKN Colorimetric; Automated Phenate (Indophenol)TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2 - 1/2 MDLTND03Database Calculated TN - Method 3	TKNF	104	Total Kieldahl Nitrogen, Eiltered, Unspecified Lab Method
TKNWL02Semi-Automated Block Digester; Colorimetric; NitroTKNWL03Colorimetric:Nessler; Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 – MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 – MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2 – MDLTND03Database Calculated TN - Method 3	TKNW	L01	TKN Colorimetric: Automated Phenate (Indophenol)
TKNWL03Colorimetric:Nessler;Titrimetic Or PotentiometricTKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 2TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TKNW	L02	Semi-Automated Block Digester: Colorimetric: Nitro
TKNWL04Total Kjeldahl Nitrogen , Whole Water, Unspecified Lab MethodTND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 3	TKNW	103	Colorimetric:Nessler:Titrimetic Or Potentiometric
TND01Database Calculated TN - Method 1TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TKNW	L04	Total Kieldahl Nitrogen, Whole Water, Unspecified Lab Method
TND01ADatabase Calculated TN - Method 1 - MDLTND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2 - 1/2 MDLTND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 3	TN	D01	Database Calculated TN - Method 1
TND01BDatabase Calculated TN - Method 1 - 1/2 MDLTND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2 - 1/2 MDLTND02BDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D01A	Database Calculated TN - Method 1 – MDL
TND01DDatabase Calculated TN - Method 1TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D01B	Database Calculated TN - Method 1 - 1/2 MDL
TND02Database Calculated TN - Method 2TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D01D	Database Calculated TN - Method 1
TND02ADatabase Calculated TN - Method 2 - MDLTND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D02	Database Calculated TN - Method 2
TND02BDatabase Calculated TN - Method 2 - 1/2 MDLTND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D02A	Database Calculated TN - Method 2 – MDL
TND02DDatabase Calculated TN - Method 2TND03Database Calculated TN - Method 3	TN	D02B	Database Calculated TN - Method 2 - 1/2 MDL
TN D03 Database Calculated TN - Method 3	TN	D02D	Database Calculated TN - Method 2
	TN	D03	Database Calculated TN - Method 3
TN D03A Database Calculated TN - Method 3 – MDL	TN	D03A	Database Calculated TN - Method 3 – MDL
TN D03B Database Calculated TN - Method 3 - 1/2 MDL	TN	D03B	Database Calculated TN - Method 3 - 1/2 MDL
TN D03D Database Calculated TN - Method 3	TN	D03D	Database Calculated TN - Method 3
TN D04 Database Calculated TN - Method 4	TN	D04	Database Calculated TN - Method 4

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
TN	D04A	Database Calculated TN - Method 4 - MDL I
TN	D04B	Database Calculated TN - Method 4 - 1/2 MDL
TN	D04D	Database Calculated TN - Method 4
TN	D05	Database Calculated TN - Method 5
TN	D05A	Database Calculated TN - Method 5
TN	D05B	Database Calculated TN - Method 5
TN	D05D	Database Calculated TN - Method 5
TN	101	Alkaline Persulfate Digestion + EPA Method 353 2
TN	102	Total Nitrogen Unspecified Lab Method
	202	Total Sediment Nitrogen, Army Corn Of Engineers Sediment Grain Size Analysis
TN	103	Protocol
TOC	D01	Database Calculated Toc - Method 1
TOC	D01A	Database Calculated Toc - Method 1 - MDL L
TOC	D01R	Database Calculated Toc - Method 1 - 1/2 MDI
TOC	D01D	Database Calculated Toc - Method 1 - 1/2 MDE
TOC		Compution Infrared Method
TOC		Wat Oxidation Mathad
TOC	L02	UV Or Heated Derculfate Ovidation
TOC		Total Organic Carbon, Unspecified Lab Method
100	L04	Total Organic Carbon, Onspecified Lab Method
TOC	1.05	Analysis Drotocol
TOU	L0J D01	Allalysis Flutucul Database Calculated Ten Method 1
		Database Calculated Ton Method 1 MDI
		Database Calculated Ton - Method 1 - MDL
		Database Calculated Ton - Method 1
		Database Calculated Ton - Method 2
		Database Calculated Ton - Method 2 MDL L
	DUZA	Database Calculated Ton - Method 2 - MDL I
		Database Calculated Ton - Method 2
		Database Calculated Ton - Method 2
	D03	Database Calculated Ton - Method 2 - MDI
	DUJA	Database Calculated Ton - Method 2 - MDL
TON	D03D	Database Calculated Ton - Method 3 - 1/2 MDL
	D03D	Database Calculated 1 011 - Method 3 Tatal Organia Nitrogan, Spacific Conductorias, Unangolfied Lab Mathad
	LUI	Total Organic Nitrogen, Specific Conductance, Unspecified Lab Method
TOTAL_DEPTH		Total Depth
TOTAL_DEPTH	FU2	Total Depth
TOTAL_DEPTH	FU3	Total Deptil Shallow Water Total Dopth Method
		Detebase Calculated TD. Mathed 1
		Database Calculated TP - Method 1 MDI
	DUTA D01D	Database Calculated TP - Method 1 - MDL
		Database Calculated TP - Method 1
		Calorimotric: Automated: Plack Digestor AAII
TD		Colorimetric: Manual: Accorbic Acid: Single Deagont
TD	L02	Colorimetric, Manual, Ascorbic Acid, Siriyle Reagent
TD	L03	Colorimetric, Mahuai, Ascorbic Acid
TD	L04 L05	Alkaling Dersulfate Digestion And EDA365 1
TD	106	Total Phosphorus, Unspecified Lab Mathod
ТР	107	Phosphorus, Will Microki ASE Ha
TS	101	Total Solids Dried At 103-105 Degrees
227		Gravimetric: Dried At 103,105 C
TIPR FTI		Formazin Turbidity Units
TIRR ITH		lackson Turbidity Units
TURE NTU	F01	In-Situ Nenhelometric (VSI 6136)
	101	

REPORTING_	SEDIMENT/WQ_	
PARAMETER	METHOD	SEDIMENT/WQ_METHOD_TITLE
TURB_NTU	F02	In-Situ Nephelometric (YSI 6026)
TURB_NTU	L01	Nephelometric
TURB_NTU	UNK	In-Situ Nephelometric-Unknown YSI
VELOCITY	F01	Stream Current Velocity
VELOCITY	F02	Stream Current Velocity
VOLORG	L01	Volatile Organics-ODU Undocumented Method
VSS	L01	Gravimetric; Ignition At 550 C
WIDTH	F01	Total Channel Width
WTEMP	F01	In-Situ Thermistor
WTEMP	F02	Thermometric
WTEMP	F03	Water Temperature, Unspecified Field Method
ZN	L01	Total Zinc; Atomic Emission Spectrometric
ZNF	L02	Dissolved Zinc

Table C-26. Reporting Parameters (REPORTING_PARAMETER).

The following list of parameters represents those that are either directly measured in the field or analyzed in the laboratory as part of biological monitoring. Additional codes may be added as needed. Currently accepted REPORTING_PARAMETERS and REPORTING_DESCRIPTION designations are as follows:

REPORTING_	REPORTING_PARAMETER_DECRIPTION
PARAMETER	
ACIDITY	Acidity
AG	Total Silver
AL	Total Aluminum
ANC	Acid Neutralizing Capacity
AS	Total Arsenic
ASH_FRWT	Sample Ash Free Dry Weight (Mg/M**3)
ASH_WT	Sample Total Ash Weight Sample (Mg/M**3)
ASHFREWT	Sample Ash Free Dry Weight Sample (G/Sample)
ASHWT	Sample Total Ash Weight (G/Sample)
BATT	Battery Voltage
BIOSI	Biogenic Silica
BIOVOLUME	Biovolume(MI/Sample)
BOAT_SPEED	Boat Speed In Knots
BOD20F	20-Day Biochemical Oxygen Demand (Filtered Sample)
BOD20W	20-Day Biochemical Oxygen Demand (Whole Sample)
BOD5F	5-Day Biochemical Oxygen Demand (Filtered Sample)
BOD5W	Whole 5-Day Biochemical Oxygen Demand
CA	Calcium, Total
CAF	Dissolved Calcium As Ca
CD	Total Cadmium
CDOM_440	Absorption Due To Dissolved Organic Matter
CDOM_SLOPE	Slope Of CDOM Absorption Coefficient Spectrum (400-500 Nm)
CHL_A	Trichromatic Chlorophyll A
CHL_B	Chlorophyll B
CHL_C	Chlorophyll C
CHLA	Active Chlorophyll-A
CLAY	Clay Content, Percent
CLF	Total Chloride
CLW	Total Chloride
COD	Chemical Oxygen Demand
COLOR	True Water Color

REPORTING_	REPORTING_PARAMETER_DECRIPTION
PARAMETER	
COUNT	Number Per Unit Measure
COUNT_7	Seven Day Average Count
CR	Total Chromium
CU	Total Copper
DCA	Dissolved Calcium
DCU	Dissolved Copper
DIC	Carbon, Inorganic, Total
DIN	Dissolved Inorganic Nitrogen
DO	Dissolved Oxygen In Mg/L
DO_SAT_M	Do Saturation Concentration In Mg/L
DO_SAT_P	Do Saturation Using Probe Units In Percent
DOC	Dissolved Organic Carbon
DON	Dissolved Organic Nitrogen
DOP	Dissolved Organic Phosphorus
DRYWT	Sample Total Dry Weight
DZN	Dissolved Zinc
EPAR_S	Par Measured In Air Or On Deck
EPARD_Z	Par With Sensor Pointing Down; Measures Upwelling
EPARU_Z	Par With Sensor Pointed Up; Measures Down welling
FCOLI_C	Fecal Coliforms (Colonies)
FCOLI_M	Fecal Coliforms (Most Probable Number)
FE_M	Total Iron
FE_U	Total Iron
FLOW_AVG	Stream Flow; Mean Daily
FLOW_INS	Stream Flow; Instantaneous
FLUORESCENCE	Fluorescence
FS	Fixed Solids
FSS	Fixed Suspended Solids
GAGE_HEIGHT	Stream Stage In Feet
HARDNESS	Hardness As CaCO3
HG	Total Mercury
IBOD5F	Inhibited 5-Day Biochemical Oxygen Demand (Filtered Sample)
IBOD5W	Inhibited 5-Day Biochemical Oxygen Demand (Whole Sample)
INTSAL	Interstitial Salinity
К	Potassium, Total
KD	Light Attenuation
KF	Dissolved Potassium As K
KURTOSIS	Kurtosis
MEANDIAM	Mean Sediment Diameter
MEASURED_DEPTH	Measured Depth
MEDDIAM	Median Sediment Diameter
MGF	Dissolved Magnesium As Mg
MN	Total Manganese
MOIST	Moisture Content
NAF	Dissolved Sodium As Na
NH4F	Ammonium Nitrogen As N (Filtered Sample)
NH4W	Ammonium Nitrogen As N (Whole Sample)
NI	Total Nickel
NO23F	Nitrite+Nitrate Nitrogen As N (Filtered Sample)
NO23W	Nitrite+Nitrate Nitrogen As N (Whole Sample)
NO2F	Nitrite Nitrogen As N (Filtered Sample)
NO2W	Nitrite Nitrogen As N (Whole Sample)
NO3F	Nitrate Nitrogen As N (Filtered Sample)
NO3W	Nitrate Nitrogen As N (Whole Sample)

REPORTING_	REPORTING_PARAMETER_DECRIPTION
PARAMETER	
ORP	Oxidation Reduction Potential
PB	Total Lead
PC	Particulate Carbon; Inorganic + Organic
PENETR	Gear Penetration Depth
PERIPHY	Periphyton Biomass; Water
PH	Ph Corrected For Temperature (25 Deg C)
PHEO	Pheophytin
PHI25	25 Percent Quartile Diameter(Phi)
PHI50	50 Percent Quartile Diameter(Phi)
PHI75	75 Percent Quartile Diameter(Phi)
PIC	Particulate Inorganic Carbon
PIP	Particulate Inorganic Phosphorus
PN	Particulate Nitrogen
PO4F	Orthophosphate Phosphorus As P (Filtered Sample)
PO4W	Orthophosphate Phosphorus As P (Whole Sample)
POC	Total Suspended Organic Carbon
PON	Particulate Organic Nitrogen
PP OUNDEDEN/	Particulate Phosphorus
QUARIDEV	Quartile Deviation
SALINITY	Salinity Units Are Parts Per Thousand (PPT) And Are Equal To Practical Salinity Units (PSU).
SAND	Sand Content, Percent
SE	I otal Selenium
SECCHI	Secon Depth
SEI_VOL	Settled Volume Zooplankton And Detritus (MI/M ¹¹¹ 3)
SET_VOLZ	Settled Volume OI Zooplankton (MI/M 3)
SETVOL	Settled Volume Zooplankton And Detrilus (Mi/Sample)
SETVOLZ	Settled Volume Of Zooplankton (Mi/Sample)
SI	Total Silicon As Si Silico As Si (Filipped Comple)
SIF	Silica As Si (Filiefed Sample)
	Water Density; Dependent On Salinity And Water Temperature
	Sill Content, Percent
SILTULAT	Silica As Si (Mhala Sampla)
	Slice AS SI (WHOLE Sample)
SNEWINESS	JKEWIJESS Total Tin
203	Total Sulfito As SO2
303 S04E	Sulfato
SO4N	Total Sulfate As SOA
SUAN	Sorting
	Conductivity Corrected For Temperature (25 Deg. (2) And Salinity
SSC %EINE	Calculated Percent Fine Sand
SSC_%INL SSC_%SAND	Calculated Percent Sand
SSC. FINE	Suspended Sediment Particles Passing Through A 0, 062 Mm Sieve
SSC SAND	Suspended Sediment Particles Retained On A 0, 062 Mm Sieve
SSC TOTAL	Total Suspended Sediment Concentration
	Total Alkalinity As CaCO3
TC	Total Carbon Content
TCHI PRF CAI	Total Chlorophyll: From A Precalibrated Eluorescence Probe Reading
	Total Coliforms (Colonies)
TCOLI M	Total Coliforms (Most Probable Number)
TDN	Total Dissolved Nitrogen
TDP	Total Dissolved Phosphorus
TDS	Total Dissolved Solids; Gravimetric; Dried At 180 C
TDZN	Total Dissolved Zink

REPORTING_	REPORTING_PARAMETER_DECRIPTION
PARAMETER	
TIC	Total Inorganic Carbonate Content
TKNF	Total Kjeldahl Nitrogen (Filtered Sample)
TKNW	Total Kjeldahl Nitrogen (Whole Sample)
TN	Total Nitrogen
TOC	Total Organic Carbon
TON	Total Organic Nitrogen
TOP	Total Organic Phosphorus
TOTAL_DEPTH	Total Station Depth
TP	Total Phosphorus
TS	Total Solids
TSS	Total Suspended Solids
TURB_FTU	Turbidity; Turbidimeter (Formazin Units)
TURB_JTU	Turbidity; Jackson Candle Method (Forward Scatter)
TURB_NTU	Turbidity; Nephelometric Method
VELOCITY	Current Velocity
VOLORG	Volatile Organic, Percent
VSS	Volatile Suspended Solids
WIDTH	Total Stream Channel Width
WTEMP	Water Temperature
ZN	Total Zinc
ZNF	Dissolved Zinc

Table C-27. Sediment Profile Image Analysis Pellet and Tube Codes (PELLET and TUBES).

These codes store information identifying faunal tube, and fecal pellet abundance classifications from the SPI camera images. The current density classifications are as follows:

TUBES or PELLETS	DESCRIPTION
FEW	1 To 6 Tubes
IND	Indeterminate
LAYER	Pellets Cover Sediment Water Interface
MANY	Greater Than 18 Tubes
NA	No Analysis
NONE	0 Tubes
SOME	7 To 18 Tubes

Table C-28. Analytical Problem Codes (PROBLEM).

This two-character code indicates when the there has been a reported problem with a measured value by the analytical laboratory or data provider. Currently accepted PROBLEM_CODES and **PROBLEM_CODE_DESCRIPTION** designations are as follows:

PROBLEM	PROBLEM_CODE_DESCRIPTION
_CODE	
А	Laboratory Accident
AA	Field Accident
В	Chemical Matrix Interference
BB	Torn Filter Pad
С	Instrument Failure
D	Insufficient Sample
DD	Sample Size Not Reported (Assumed)
E	Sample Received After Holding Time
F	Post-Calibration Failure Likely Due To Equipment Damage After Sampling; Data Appear Normal
FF	Mean Reported Due To Poor Replication Between Pads
GG	Sample Analyzed After Holding Time
1	Suspect Value Has Been Verified Correct
J	Incorrect Sample Fraction For Analysis
JJ	Volume Filtered Not Recorded (Assumed)
L	Licor Calibration Off By >= 10% Per Year. Use With Calc Kd Where Probe Of Lu, Ls, Lb Exist In Raw
LB	Licor Calibration Off By >= 10% Per Year For Both Air And Upward Facing Sensors
LS	Licor Calibration Off By >= 10% Per Year For Air Sensor
LU	Licor Calibration Off By >= 10% Per Year For Upward Facing Sensor
MM	Over 20% Of Sample Adhered To Pouch And Outside Of Pad
Ν	None
NN	Particulates Found In Filtered Sample
Ρ	Provisional Data
Q	Analyte Present; Reported Value Is Estimated; Conc. Is Below The Range For Accurate Quantification
QQ	Part Exceeds Whole Value Yet Difference Is Within Analytical Precision
R	Sample Contaminated
RR	No Sample Received By Lab From Field Office
SS	Sample Rejected Due To High Suspended Sediment Concentration
U	Matrix Problem Resulting From The Interrelationship Between Variables Such As Ph And Ammonia
UN	For DCDOH Data, These Values Are Issues Or Are Nulls With No Assigned Problem Codes.
V	Sample Results Rejected Due To QC Criteria
WW	High Optical Density (750 Nm); Actual Value Recorded
Х	Sample Not Preserved Properly

Table C-29. Sampling Program Codes (PROGRAM).

Within a given agency or organization there may be a subgroup or division who is responsible for processing and storing collected data. Program_Code refers to the group within an entity responsible for data collection. Currently accepted PROGRAM_CODEs and PROGRAM_DESCRIPTIONS are as follows:

AGENCY	PROGRAM	PROGRAM_DESCRIPTION		
AAC_DPW	AAWERS	Anne Arundel County-Watershed Ecosystem and Restoration Services		
BAL_DPW	BALSMP	City Of Baltimore- Stream Monitoring Program		
BC_DEP	BCWMP	Baltimore Co. Watershed Management and Monitoring		
DC_DDPE	DCSMP	District of Columbia-Stream Monitoring Program		
DNREC	DEBM	Delaware Biological Monitoring Program		
FC_DPW	FCWMP	Frederick County Watershed Management Program		
FC_SPS	FCSQAP	Fairfax County Stream Quality Assessment Program		
HC_DPW	HCBMSA	Howard Co Bio-Monitoring and Assessment Program		
ICPRB	HISTORIC	Pre-Chesapeake Bay Tidal Monitoring Programs		
LC_DBD	LCSAP	Loudoun County Stream Quality Assessment Program		
MC_SPS	MCSMP	Montgomery Co Dept. of Environmental Protection		
MDDNR	WQMP	Chesapeake Bay Mainstem And Tidal Tributary		
		Water Quality Monitoring Program		
MDE	MDCT	Maryland Department of Environment Core/Trend Monitoring Network		
MDMNR	MBSS	Maryland Biological Stream Survey		
NYDEC	RSMP	New York Routine Statewide Monitoring Program		
PADEP	PAOWQA	Pennsylvania DEP Other Water Quality Assessments		
PADEP	PASWM	Pennsylvania DEP Surface Water Monitoring Program		
PADEP	PAUW	Pennsylvania DEP Unassessed Watersheds		
PGC_DER	PGCSS	Prince Georges Co Programs and Planning Division		
SRBC	TMDL	SRBC-Watershed Assessment and Protection-TMDL		
SRBC	WA	SRBC-Watershed Assessment Program		
USEPA	EMAP	EPA-EMAP Wadeable Streams Assessment		
USEPA	EPA\NCAS	EPA EMAP National Coastal Assessment Program		
USEPA	MAHA	EPA-Mid-Atlantic Highlands Assessment		
USEPA	WSA	EPA-Wadeable Stream Assessment Program		
USFS	NFSSA	National Forest Service Stream Assessment		
USGS	NAWQA	USGS-National Water Quality Assessment Program		
USGS	PAUSGS	Pennsylvania USGS Monitoring Program		
VADEQ	ERMP	Elizabeth River Monitoring Program		
VADEQ	SA	Virginia DEQ Non Tidal Stream Assessment Monitoring Program		
VADEQ	WQMP	Chesapeake Bay Mainstem And Tidal Tributary		
		Water Quality Monitoring Program		
VCU	INSTAR	INteractive STream Assessment Resource		
WVDEP	SA	West Virginia Div. of Water and Waste Management		

Table C-30. Sampling Project Codes (PROJECT).

Many monitoring programs organize their various monitoring efforts as individual projects based on the purpose of the monitoring effort. Note: the non-tidal benthic data does not use formal project codes. Currently accepted PROJECT_CODEs and PROJECT_DESCRIPTIONS are as follows:

AGENCY	PROGRAM	PROJECT_CODE	PROJECT_DESCRIPTION
AAC_DPW	AAWERS		Anne Arundel County Aquatic Biological Monitoring Program
BAL_DPW	SMP		City of Baltimore NPDES Assessment Program
BC_DEP	BCWMP		County of Baltimore NPDES Assessment Program
DC_DDOE	SMP		District of Columbia NPDES Assessment Program
DNREC	DEBM		Delaware Biological Monitoring Program
FC-DPW	FCWMP		Frederick County Stream Assessment Program
FC-DPW	FCWMP		Frederick County Stream Restoration Monitoring Program
FC-SPS	FCSQAP		Fairiax County Stream Protection Strategy
	HUBIVISA		Howard County Biological Monitoring and Assessment Program
		VAVIISI	Loudoun County STDEAM ASSESSMENT Drogram
MC-SPS	MCSMD		Montgomery County Countywide Stream protection Strategy
MDDNR	MBSS		Maryland Biological Stream Survey 2000-2001
MDDNR	MBSS		Maryland Biological Stream Survey 2000-2004
MDDNR	MBSS		Maryland Biological Stream Survey 2005-present
MDDNR	MBSS		Maryland Stream Waders Program
MDDNR	MDCT		Maryland Core/Trend Monitoring Network
MDDNR	WQMP	MAINSTEM	Chesapeake Bay Mainstem Monitoring Program
MDDNR	WQMP	POTOMAC	Potomac River Special Survey
MDDNR	WQMP	MAIN/TRIB	Long-Term Benthic Monitoring Program
NYDEC	RSMP		Stream Biomonitoring Program
PADEP	PAOWQA		319 Funded Project
PADEP	PAOWQA		Effluent Dominated Study
PADEP	PAOWQA		Fish IBI
PADEP	PASWM		Antidegradaton Survey
	PASWIVI		Basin Survey
	PASWIVI		
PADEP	PASWM PASWM		Intensive Unassessed Follow.up
	PASWM		Point of First Lise
PADEP	PASWM		Probabilistic Survey
PADEP	PASWM		Use Attainability
PADEP	PAUSGS		WQN – Macroinvertebrates
PADEP	PAUW		Unassessed Watersheds
PGC-DER	PGCSS		Biological Assessment and Monitoring Program
SRBC	TMDL		AMD sampling
SRBC	TMDL		AMD Sampling for TMDL Development-2000
SRBC	TMDL		AMD Sampling for TMDL Development-2000B
SRBC	TMDL		AMD Sampling for TMDL Development-2001
SKBC	IMDL		AMD Sampling for TMDL Development-2002
SKRC			AIVID Sampling for TIVIDL Development-2003
SUDC			Deaverualii Branch and Mill kun TMDL
SDBC			CULIESIUYA RIVEL WALEISITEU HVIDL Frankstown Branch Juniata Divor ICE/TMDI
SRBC			Actoraro Creek TMDI
SRBC	TMDI		Water Quality Sampling for TMDL Development
			alias: AMD Sampling

AGENCY	PROGRAM	PROJECT_CODE	PROJECT_DESCRIPTION
SRBC	WA		Chemung Subbasin Survey Year 1 – 1997
SRBC	WA		Chemung Subbasin Survey Year 1 – 2006
SRBC	WA		Chemung Subbasin Survey, Year 2 - Cohocton River Watershed
SRBC	WA		ICE sampling in the Yellow Breeches
SRBC	WA		Interstate Stream Water Quality Network
SRBC	WA		Juniata Subbasin Survey Year 1 – 1995
SRBC	WA		Juniata Subbasin Survey Year 1 – 2004
SRBC	WA		Juniata Subbasin Survey, Year 2 - Morrison Cove
SRBC	WA		Large River Assessment 2005
SRBC	WA		Large River Assessment 2007
SRBC	WA		Large River Assessment Pilot Project
SRBC	WA		Large River Assessment Programs-Ongoing
SRBC	WA		Lower Susquehanna Subbasin Survey Year 1 – 1996
SRBC	WA		Lower Susquehanna Subbasin Survey, Year 1 – 2005
SRBC	WA		Lower Susquehanna Subbasin Survey, Year 2 - Yellow Breeches Watershed
SRBC	WA		Middle Susquehanna Subbasin Survey - Year 2 (Wyalusing Creek)
SRBC	WA		Middle Susquehanna Subbasin Survey Year 1 – 2001
SRBC	WA		Middle Susquehanna Subbasin Survey-Ongoing
SRBC	WA		New York EWS
SRBC	WA		Science in Motion 2006
SRBC	WA		Targeted Watershed Grant - Paxton Creek
SRBC	WA		Upper Susquehanna Subbasin Survey Year 1 – 1998
SRBC	WA		Upper Susquehanna Subbasin Survey Year 2 – 2000
SRBC	WA		Upper Susquehanna Subbasin Survey Year 2 - Whitney Point
SRBC	WA		Upper Susquehanna Subbasin Survey, Year 1
SRBC	WA		West Branch Subbasin Survey, Year 2 - Morgan Run
SRBC	WA		West Branch Susquehanna Subbasin Survey Year 1 – 2002
SRBC	WA		West Branch Susquehanna Subbasin Survey, 1994
SRBC	WA		Whitney Point Lake and Watershed Adaptive Management and Monitoring Plan
USEPA	EMAP		EPA Wadeable Streams Assessment
USEPA	EPA\NCAS	MAIN/TRIB	Long-Term Benthic Monitoring Program
USEPA	EPA\NCAS	VA/CBAY	Virginia Coastal Bay Monitoring
USEPA	MAHA		Mid-Atlantic Highlands Assessment
USEPA	WSA		Wadeable Stream Assessment Program
USFS	SA		Jefferson/George Washington National Forest Stream Assessment
USGS	NAWQA		National Water-Quality Assessment Program
VADEQ	SA		ProbMon
VADEQ	SA		Special Study &/Or Monitoring 2000-Ongoing
VADEQ	SA		Special Study &/Or Monitoring 2003-2007
VADEQ	SA		TMDL
VADEQ	WQMP	MAINSTEM	Chesapeake Bay Mainstem
VADEQ	WQMP	MAIN/TRIB	Long-Term Benthic Monitoring Program
VCU	INSTAR		Virginia Commonwealth University Instar Program
WVDEP	SA		Ambient Monitoring Network
WVDEP	SA		Long Lerm Monitoring Stations
WVDEP	SA		Kandom Surveys
WVDEP	SA		
WVDEP	SA		Unassessed Watersheds
WVDEP	SA		Watershed Assessment Protocol (WAP)

Table C-31. Detection Limit Codes (QUALIFIERS).

This two-character code indicates when the Reporting_Value of the Reporting_Parameter is outside the detection limits of the method being used. The valid entries for this field are as follows:

QUALIFIERS	QUALIFIERS_DESCRIPTION
#	Trace (less than an unknown detectable value)
<	Less than the detection limit of the method
<0	Less than the detection limit of the method value set to 0
>	Greater than detection limit of method
A	Acceptable Value-Within Range
С	Data suspect use caution
J	Estimated value
Ν	Not detected
NA	Not recorded/parameter value not acceptable

Table C-32. Reporting Parameter Prevalence (REPORTING_PARAMETER_PREVALENCE)

In some cases in non-tidal benthic studies the abundance of benthic organism were reported in abundance categories instead of actual organism counts. REPORTING_PARAMETER_PREVALENCE abundance classes are as follows:

REPORTING_ REPORTING_PARAMETER REPORTING_PARAMETER PARAMETER_ PREVALENCE_NAME _PREVALENCE_RANGE PREVALENCE_RANGE

А	Abundant	25-100
С	Common	10-24
Р	Present	3-9
R	Rare	<3
VA	Very Abundant	>100

Table C-33. Salinity Zone (SALZONE).

Sampling Salinity Zone codes are used in numerous places in the tidal monitoring data and indexes of biotic integrity. If these data are collected, they are located in the EVENT DATA FILE.

SALZONE	DESCRIPTION
F	Freshwater- less than 0. 5 PSU
0	Oligohaline- 0. 5 to 5. 0 PSU
Μ	Mesohaline- 5. 1 to 18. 0 PSU
LM	Low Mesohaline- 5. 1 to 12. 5 PSU
HM	High Mesohaline- 12. 5 to 18. 0 PSU
Р	Polyhaline- greater than 18. 0 PSU
N	Not Recorded
E	An E accompanying an F, O, M, or P indicates an estimated salinity zone.
	Salzone value based on salinity data NOT collected synchronous with biological data.

Table C-34. Sample Replicate Type (SAMPLE_REPLICATE_TYPE). The current CBP Water Quality and Non-tidal benthic databases describe water quality samples by sample replicate type. This parameter combines the sample replicate number with a sample type descriptor. Currently accepted SAMPLE_REPLICATE_TYPE designations are as follows:

Sample_ Replicate Type	SAMPLE_REPLICATE_TYPE _DESCRIPTION
CTRI	CONTROL SAMPLE
FI	FIFLD AND LAR REPLICATES
FLD	FIELD REPLICATE
FS AVG	AVERAGE OF TWO FIELD SPLIT SUBSAMPLE VALUES
FS1	FIFLD SPLIT SUBSAMPLE 1
ES1/LAV	I ABORATORY AVERAGE FOR FIELD SPLIT 1
ES1/LS1	FIFLD SPLIT SUBSAMPLE 1/LAB SPLIT SUBSAMPLE 1
FS1/LS2	FIELD SPLIT SUBSAMPLE 1/LAB SPLIT SUBSAMPLE 2
FS1 AVG	AVERAGE OF LAB SPLITS GENERATED FROM FIELD SPLIT SUBSAMPLE 1
FS2	FIELD SPLIT SUBSAMPLE 2
FS2/LAV	LABORATORY AVERAGE FOR FIELD SPLIT TWO
FS2/LS1	FIELD SPLIT SUBSAMPLE2 /LAB SPLIT SUBSAMPLE 1
FS2/LS2	FIELD SPLIT SUBSAMPLE 2/LAB SPLIT SUBSAMPLE 1LAB SPLIT SUBSAMPLE 2
FS2_AVG	AVERAGE OF LAB SPLITS GENERATED FROM FIELD SPLIT SUBSAMPLE 2
FS3	FIELD SPLIT SUBSAMPLE 3
FS4	FIELD SPLIT SUBSAMPLE 4
LAB	LAB REPLICATE
LS1	LAB SPLIT SUBSAMPLE 1
LS2	LAB SPLIT SUBSAMPLE 2
LS3	LAB SPLIT SUBSAMPLE 3
M1	FIELD MEASUREMENT 1
M2	FIELD MEASUREMENT 2
M3	FIELD MEASUREMENT 3
M4	FIELD MEASUREMENT 4
METH	METHOD COMPARISON
S1	SAMPLE 1
S1/LS1	SAMPLE 1/LAB SPLIT SUBSAMPLE 1
S1/LS2	SAMPLE 1/LAB SPLIT SUBSAMPLE 2
S1/LS3	SAMPLE 1/LAB SPLIT SUBSAMPLE 3
S2	SAMPLE 2
S2/LS1	SAMPLE 2/LAB SPLIT SUBSAMPLE 1
S2/LS2	SAMPLE 2/LAB SPLIT SUBSAMPLE 2
S2/LS3	SAMPLE 2/LAB SPLIT SUBSAMPLE 3
S3	SAMPLE 3
SPK	SPIKE SAMPLE
SPK1	SPIKE SAMPLE SUBSAMPLE 1
SPK2	SPIKE SAMPLE SUBSAMPLE 2
SPLT	FIELD SPLIT

Table C-35. Sample Collection Type (SAMPLE_TYPE).

The sample type describes how a sample was physically collected. Currently accepted Sample collection Type codes are as follows:

С	COMPOSITE SAMPLE, MADE UP OF SUBSAMPLES FROM MULTIPLE DEPTHS
CS	COMPOSITE SAMPLE COLLECTED SPATIALLY
CT	COMPOSITE SAMPLE COLLECTED TEMPORALLY
D	DISCRETE SAMPLE, SAMPLE TAKEN FROM SINGLE DEPTH
HVIC	HORIZONTAL AND VERTICALLY INTEGRATED COMPOSITE SAMPLE
ISM	IN-SITU MEASUREMENT AT DEPTH, NO SAMPLE COLLECTED
ISM_H	IN-SITU MEASUREMENT, COLLECTED AS PART OF A HORIZONTAL TRANSECT
ISM_V	IN-SITU MEASUREMENT, COLLECTED AS PART OF A VERTICAL PROFILE

Table C-36. Benthic Image Analysis Sediment Characterization (SEDIMENT TYPE).

Currently the Wentworth sediment classification scheme is used to characterize sediment composition in the Benthic Sediment Imaging Program. Classifications are as follows:

SEDIMENT TYPE	DESCRIPTION	SEDIMENT TYPE	DESCRIPTION
CL	CLAY	MSC	MEDIUM SAND-CLAY
CLMS	CLAY-MEDIUM SAND	MSGR	MEDIUM SAND-GRAVEL
CLSH	CLAY-SHELL	NA	NOT AVAILABLE
CLSI	CLAY-SILT	SA/SICL	SAND-SILTYCLAY
CLSI/SH	CLAY-SILT-SHELL	SACL	SANDY CLAY
CLSIFS	CLAY-SILT-FINE SAND	SASH	SAND-SHELL
FS	FINE SAND	SASI	SANDY SILT
FS/FSSI	FINE SAND-FINE SANDY SILT	SH	SHELL
FS/SI	FINE SAND- SILT	SHFS	SHELL-FINE SAND
FS/SICL	FINE SAND-SILTY CLAY	SHFSSI/CL	SHELL-FINE SAND-SILT-CLAY
FSCL	FINE SAND-CLAY	SHSA	SHELL-SAND
FSGR	FINE SAND-GRAVEL	SHSICL	SHELL-SILT-CLAY
FSMS	FINE SAND-MEDIUM SAND	SI	SILT
FSMS/SI	FINE SAND-MEDIUM SAND- SILT	SICL	SILTY CLAY
FSMSSH/SI	FINE SAND-MEDIUM SAND-SHELL- SILT	SICL/SH	SILTY CLAY-SHELL
FSSH	FINE SAND –SHELL	SICLFS	SILTY CLAY-FINE SAND
FSSICL	FINE SAND-SILT-CLAY	SIFS	SILTY FINE SAND
FSSISH	FINE SAND-SILT-SHELL	SIFSMS	SILTY FINE SAND - MEDIUM SAND
IND	INDETERMINATE	SISA	SILTY SAND
MFSCL	MEDIUM FINE SAND-CLAY	SISACL	SILTY SANDY CLAY
MS	MEDIUM SAND	SISH	SILTY SHELL

Table C-37. Sampling Stratum (STRATUM).

131

Jug Bay

In the current tidal benthic sampling program, two types of sites are sampled: (1) fixed sites to identify temporal trends and (2) spatially random sites are sampled to assess bay-wide benthic status. While a variety of strata designs have been used over the history of the program, the current sampling stratum consists of 17 Strata (Denoted by bold and underlined type). Current and historic stratum codes and descriptions are as follows:

STRATUM	STRATUM_DESCRIPTION	STRATUM	STRATUM_DESCRIPTION
101	Calvert Cliffs		
102	Calvert Cliffs	BAY	Virginia Lower Bay
103	Calvert Cliffs	ELZ	Elizabeth River
104	Holland Point	JAM	James River
105	Holland Point	LAR	Large Estuary
106	Bloody Point	MET	Maryland Eastern Tributaries
107	Bodkin Point	MMS	Maryland Mainstem
108	Poole's Island	MWT	Maryland Western Tributaries
109	Turkey Point	PAR	Paradise Creek
110	Point Lookout	PAT	Baltimore Harbor, Patapsco River
111	Point Lookout	PMR	Potomac River
112	St Clements Island	PXR	Patuxent River
113	St Clements Island	RAP	Rappahannock River
114	Morgantown	SML	Small Estuary
115	Morgantown	TID	Tidal River
116	Maryland Point	UPB	Maryland Upper Bay
117	Rosier Bluff	VACB	VIRGINIA COASTAL BAYS
118	Todd's Point	YRK	York River
119	Todd's Point		
120	Jamaica Point		
121	King's Creek		
122	Piney Point		
123	Frying Pan Point		
124	Sparrows Point		
125	Bear Creek		
126	Curtis Bay		
127	Middle Branch		
128	Broomes Island		
129	Broomes Island		
130	Chalk Point		

Table C-38. Site Selection Type (SITE_TYPE).

This Site_Type code provides general information on user how a sampling site was selected. Please see individual monitoring program documentation for details on site selection. The currently accepted SITE_TYPE_CODES and SITE_TYPE_DEFINITIONS are as follows:

SITE_TYPE_CODE SITE_TYPE_DEFINITIONS

F	Long term Fixed sample Site
QC	Quality Control Site
R	Randomly selected site within a habitat strata
RR	Randomly Selected Site- Found to be a Reference Site
ТВ	Target-Baseline Site
TD	Target-Downstream of Known Impairment
TR	Target-Reference Site
TS	Target-Systematic Site selected
U	Unspecified

Table C-39. Data Collecting Agency (SOURCE).

The Agency or Source codes were added to the database to identify the entity that generates the monitoring data directly or under contract to a larger organization.

AGENCY OR	AGENCY OR SOURCE NAME
SOURCE	
AAC_DPW	Anne Arundel County-Department of Public Works
BAL_DPW	City of Baltimore-Department of Public Works
BC_DEP	Baltimore County Department of Environmental Protection
DC_DDOE	District of Columbia-District Department of the Environment
DNREC	Delaware Department of Natural Resources and Environmental Control
FC-DPW	Frederick County Department of Public Works
FC-SPS	Fairfax County Department of Public Works and Environmental Services
HC_DPW	Howard County Department of Public Works
LC-DBD	Loudon County Department Of Building And Development
MC-SPS	Montgomery County Department of Environmental Protection
MDDNR	Maryland Department of Natural Resources
MDE	Maryland Department Of The Environment
MSU	Morgan State University
NYDEC	New York Department Of Environmental Conservation
PADEP	Pennsylvania Department of Environmental Protection
PGC-DER	Prince George's County Department of Environmental Resources
SRBC	Susquehanna River Basin Commission
USEPA	United States Environmental Protection Agency
USFS	United States Forest Service
USGS	United States Geological Survey
VADEQ	Virginia Department of Environmental Quality
VCU	Virginia Commonwealth University
VERSAR	Versar Incorporated
VIMS	Virginia Institute Of Marine Science
WVDEP	West Virginia Department of Environmental Protection

Table C-40. Agency Species Codes (SPECCODE).

Many of the agencies reporting data containing species information have developed their own in-house species codes. All of these codes are found in the SPECCODE column of a given data type. Codes will vary by agency and data type. The agency code column in most cases has been given the agency name code in the data documentation. The valid alternate field names for SPECCODE are as follows:

SPECCODE	DESCRIPTION
ANSCODE	Academy of Natural Sciences, Benedict Estuarine Research Laboratory
MSUCODE	Morgan State University
ODUCODE	Old Dominion University
VERCODE	Versar Incorporated–Maryland Power Plant Sighting Codes
VIMSCODE	Virginia Institute of Marine Sciences

Table C-41. Alternate Sampling Station Identifier.

The following stations had their names changed to the standard CBP station names in July 1998. Alternate names appearing in previous versions of the biological and water quality data sets and data users guides are as follows:

AGENCY	AGENCY_ STATION	STATION	AGENCY	AGENCY_ STATION	STATION	AGENCY	AGENCY_ STATION	STATION
MDDNR	MEE3. 1	EE3. 1	MDDNR	XDF0407	LE1. 3	PADEP	WQN0201	WQN0202
MDDNR	MET4. 2	ET4. 2	MDDNR	XEA1840	TF2. 4	PADEP	WQN0204	WQN0206
MDDNR	MET5. 1	ET5. 1	MDDNR	XEA6596	TF2. 3	PADEP	WQN0214	WQN0241
MDDNR	MET5. 2	ET5. 2	MDDNR	XED4892	TF1. 7	PADEP	WQN0217	WQN0218
MDDNR	MLE2. 2	LE2. 2	MDDNR	XED9490	TF1. 6	PADEP	WQN0302	WQN0303
MDDNR	MWT5. 1	WT5. 1	MDDNR	XFB1433	TF2. 2	PADEP	WQN0303	WQN0304
MDDNR	MET5. 0A	ET5. 0A	MDDNR	XFB2470	TF2. 1	PADEP	WQN0311	WQN0312
MDDNR	CHO0626	ET5. 0	MDDNR	XHF1373	CB3. 3C	PADEP	WQN0426	WQN0436
MDDNR	PR01	TF2.0	MDDNR	XJH6680	CB2. 1	USGS	01491000	ET5. 0
MDDNR	PXT0402	TF1. 5	ODU	1	LE5. 5	USGS	01578310	CB1. 0
MDDNR	PXT0456	TF1. 4	ODU	2	CB8. 1	USGS	01594440	TF1.0
MDDNR	PXT0494	TF1. 3	ODU	3	CB8. 1E	USGS	01646580	TF2. 0
MDDNR	PXT0603	TF1.0	ODU	4	CB7. 4	USGS	01668000	TF3.0
MDDNR	SUS0109	CB1. 0	ODU	5	CB7. 4N	USGS	01673000	TF4. 0P
MDDNR	TF1.1	TF1.0	ODU	6	CB7. 3	USGS	01674500	TF4. 0M
MDDNR	WXT0045	TF1. 2	ODU	7	CB7. 3E	USGS	02035000	TF5. 0J
MDDNR	XCF8747	LE1. 4	ODU	8	CB6. 4	USGS	02041650	TF5. 0A
MDDNR	XCF9575	CB5. 1W	ODU	9A	CB5. 4	VADEQ	TF3. 1	TF3.0
MDDNR	XCG8613	CB5. 1	ODU	9B	LE3. 7	VADEQ	TF4. 1	TF4. 0P
MDDNR	XDA1177	RET2. 2	ODU	9C	WE4. 1	VADEQ	TF4. 3	TF4. 0M
MDDNR	XDA4238	RET2. 1	ODU	9D	WE4. 4	VADEQ	TF5. 1	TF5. 0J
MDDNR	XDB3321	RET2. 3	ODU	9E	CB7. 2E	VADEQ	TF5. 4A	TF5. 0A
MDDNR	XDC1706	RET2. 4	ODU	9F	WE4. 2	VIMS	EE3. 1	EE3. 4
MDDNR	XDE2792	LE1. 2	ODU	9G	WE4. 3	VIMS	EE3. 2	EE3. 5
MDDNR	XDE5339	LE1. 1	ODU	9H	CB7. 1N			
MDDNR	XDE9401	RET1. 1	ODU	91	CB7. 1S			

Table C-42. Sampling Station Identifier (STATION).

Provided here is a current list of the tidal fixed monitoring stations for all CBP monitoring programs is given here. All latitudes and longitudes are in NAD83 coordinates. These sites are given unique station identifiers in the databases and are not included in the following list.

STATION	LATITUDE	LONGITUDE	STATION_DESCRIPTION
CB1. 0	39. 658719	-76. 17412	SUSQUEHANNA RIVER AT CONOWINGO DAM
CB1. 1	39. 544835	-76. 081339	MOUTH OF SUSQUEHANNA RIVER; HEAD OF BAY; MID-CHANNEL
CB2. 1	39. 440114	-76. 024669	SOUTHWEST OF TURKEY POINT; UPPER LIMIT OF TRANSITION ZONE; MID-CHANNEL
CB2. 2	39. 346776	-76. 174674	WEST OF STILL POND NEAR BUOY R-34; MIDDLE OF TRANSITION ZONE; MID-CHANNEL
CB3. 1	39. 248164	-76. 237732	SOUTHEAST OF GUNPOWDER NECK BETWEEN BUOY 24A AND 24B; LOWER LIMIT OF TRANSITION ZONE; MID-CHANNEL
CB3. 2	39. 163165	-76. 306067	NORTHWEST OF SWAN POINT NEAR BUOY R-10; LOWER ESTUARINE REACH; MID-CHANNEL
CB3. 3C	38. 995945	-76. 359679	NORTH OF BAY BRIDGE; CHARACTERIZES MID-CHANNEL
CB3. 3E	39. 001778	-76. 346068	NORTHEAST OF BAY BRIDGE; CHARACTERIZES EASTERN SHORE
CB3. 3W	39. 003167	-76. 388014	NORTHWEST OF BAY BRIDGE; CHARACTERIZES WESTERN SHORE
CB4. 0C	38. 927058	-76. 394401	SOUTH OF BAY BRIDGE; CHARACTERIZES MID-CHANNEL
CB4. 0E	38. 927058	-76. 386901	SOUTHEAST OF BAY BRIDGE; CHARACTERIZES EASTERN SHORE
CB4. 0W	38. 927336	-76. 432735	SOUTHWEST OF BAY BRIDGE; CHARACTERIZES WESTERN SHORE
CB4. 1C	38. 825116	-76. 399676	SOUTHWEST OF KENT POINT; CHARACTERIZES MID-CHANNEL
CB4. 1E	38.816505	-76. 371064	SOUTH OF KENT POINT; BOUNDARY BETWEEN CB4 AND EE1; RIVER CHANNEL
CB4. 1W	38. 81345	-76. 462733	SOUTHEAST OF HORSESHOE POINT; CHARACTERIZES WESTERN SHORE
CB4. 2C	38. 644842	-76. 417729	SOUTHWEST OF TILGHMAN ISLAND NEAR BUOY CR; CHARACTERIZES MID-CHANNEL
CB4. 2E	38. 644842	-76. 399951	SOUTHWEST OF TILGHMAN ISLAND; CHARACTERIZES EASTERN SHORE
CB4. 2W	38. 643453	-76. 501343	NORTHWEST OF PLUM POINT; CHARACTERIZES WESTERN SHORE
CB4. 3C	38. 55651	-76. 434673	EAST OF DARES BEACH NEAR BUOY R-64; CHARACTERIZES MID-CHANNEL
CB4. 3E	38. 55651	-76. 389672	MOUTH OF CHOPTANK RIVER; BOUNDARY BETWEEN CB4 AND EE2
CB4. 3W	38. 556511	-76. 493008	EAST OF DARES BEACH; CHARACTERIZES WESTERN SHORE
CB4. 4	38. 413178	-76. 343003	NORTHEAST OF COVE POINT; MID-CHANNEL
CB5. 1	38. 318457	-76. 292724	EAST OF CEDAR POINT AND PR BUOY; MID-CHANNEL
CB5. 1W	38. 325124	-76. 375505	MID-CHANNEL BETWEEN CEDAR POINT AND COVE POINT; CHARACTERIZES LOWER ESTUARINE
CB5. 2	38. 136791	-76. 227998	EAST OF POINT NO POINT; MID-CHANNEL
CB5. 3	37.911793	-76. 167718	NORTHEAST OF SMITH POINT AT VIRGINIA STATE LINE; MID-CHANNEL; OVERLAP STATION WITH VIRGINIA
CB5. 4	37.8	-76. 175	CENTRAL CHESAPEAKE BAY (DEEP MAIN CHANNEL)

STATION	LATITUDE	LONGITUDE	ESTATION_DESCRIPTION
CB5. 4W	37. 813333	-76. 295	CENTRAL CHESAPEAKE BAY AT THE MOUTH OF THE GREAT WICOMICO RIVER
CB5. 5	37. 691667	-76. 19	CENTRAL CHESAPEAKE BAY (MAIN CHANNEL)
CB6. 1	37. 588333	-76. 1625	LOWER WEST CENTRAL CHESAPEAKE BAY (MAIN CHANNEL OFF LOWER END OF THE RAPPAHANNOCK RIVER)
CB6. 2	37. 486667	-76. 156667	LOWER WEST CENTRAL CHESAPEAKE BAY
CB6. 3	37. 411389	-76. 16	LOWER WEST CENTRAL CHESAPEAKE BAY (WOLFTRAP)
CB6. 4	37. 236389	-76. 208333	CENTRAL CHESAPEAKE BAY OFFSHORE FROM MOUTH OF YORK RIVER
CB7. 1	37. 683333	-75. 99	LOWER EAST CENTRAL CHESAPEAKE BAY (EASTERN SHORE CHANNEL)
CB7. 1N	37.775	-75. 975	LOWER EAST CENTRAL CHESAPEAKE BAY (TANGIER SOUND CHANNEL)
CB7. 1S	37. 581111	-76. 058333	LOWER EAST CENTRAL CHESAPEAKE BAY (EASTERN SHORE CHANNEL)
CB7. 2	37. 411389	-76. 08	LOWER EAST CENTRAL CHESAPEAKE BAY (EASTERN SHORE CHANNEL)
CB7. 2E	37. 411389	-76. 025	LOWER EAST CENTRAL CHESAPEAKE BAY (EASTERN SHORE, SIDE CHANNEL)
CB7. 3	37. 116667	-76. 125556	MAINSTEM YORK SPIT CHANNEL
CB7. 3E	37. 228611	-76. 054167	LOWER EASTERN SHORE CHANNEL AREA
CB7. 4	36. 995556	-76. 020833	BALTIMORE CHANNEL AT THE BAY BRIDGE/TUNNEL
CB7. 4N	37.062222	-75. 983333	NORTH CHANNEL AT THE BAY BRIDGE/TUNNEL
CB8. 1	36. 995278	-76. 178333	BETWEEN JAMES RIVER MOUTH AND THIMBLE SHOALS CHANNEL
CB8. 1E	36. 947222	-76. 035278	THIMBLE SHOALS CHANNEL AT BAY BRIDGE/TUNNEL
EE1. 1	38. 883448	-76. 249673	EASTERN BAY BETWEEN TILGHMAN POINT AND PARSONS ISLAND, NORTH OF BUOY R-4; CHARACTERIZES EMBAYMENT
EE2. 1	38. 65012	-76. 274669	CHOPTANK EMBAYMENT BETWEEN TODDS POINT AND NELSON POINT; MIDWAY BETWEEN BUOY BWN63B AND R-12
EE2. 2	38. 533455	-76. 308003	LITTLE CHOPTANK RIVER MID-CHANNEL WEST OF RAGGED POINT, WEST OF BUOY FIG-"3"; CHARACTERIZES
EE3. 0	38, 283456	-76, 016325	FISHING BAY AT DAYMARK 3. WEST OF ROASTING EAR POINT: CHARACTERIZES EMBAYMENT
EE3. 1	38. 200123	-75, 974656	NORTH TANGIER SOUND, NORTHWEST OF HAINES POINT, 100 YARDS NORTH OF BUOY R-16: CHARACTERIZES
			EMBAYMENT
EE3. 2	37. 792627	-75. 932991	SOUTH TANGIER SOUND, MID-CHANNEL; EAST OF SMITH ISLAND, 500 YARDS NNW OF BUOY R-8; CHARACTERIZES EMBAYMENT
EE3. 3	37. 941792	-75. 76632	POCOMOKE SOUND, MID-CHANNEL NEAR BUOY W-"A" PLACE; STATE LINE; CHARACTERIZES EMBAYMENT
EE3. 4	37. 908333	-75. 791667	POCOMOKE SOUND NORTHWEST OF LONG POINT
EE3. 5	37.796389	-75. 844722	CHESAPEAKE BAY SOUTHEAST OF TANGIER ISLAND
ET1. 1	39. 575114	-75. 958	NORTHEAST RIVER AT BUOY F1R-12 OFF HANCE POINT; MID-CHANNEL; TIDAL FRESH WATER STATION
ET10. 1	38. 083455	-75. 566314	UPPER POCOMAKE RIVER NEAR ALTERNATE ROUTE 13 BRIDGE AT POCOMAKE CITY; TIDAL FRESH WATER STATION
ET2. 1	39. 525113	-75. 816326	BACK CREEK NEAR ROUTE 213 BRIDGE AT CHESAPEAKE BAY; TIDAL FRESH WATER STATION

STATION	LATITUDE	LONGITUDE	STATION_DESCRIPTION
ET2. 2	39. 46678	-75. 874662	BOHEMIA RIVER OFF OLD HACK POINT AT BUOY F1R-4; MID-CHANNEL; TIDAL FRESH WATER STATION
ET2. 3	39. 508448	-75. 899664	ELK RIVER, SOUTHEAST OF OLDFIELD POINT AT B-15; MID-CHANNEL; TIDAL FRESH WATER STATION
ET3. 1	39. 366779	-75. 882995	SASSAFRAS RIVER NEAR ROUTE 213 BRIDGE; TIDAL FRESH WATER STATION
ET4. 1	39. 258443	-75. 924662	CHESTER RIVER AT CRUMPTON NEAR ROUTE 290 BRIDGE; TIDAL FRESH WATER STATION
ET4. 2	38. 991779	-76. 216341	LOWER CHESTER RIVER, SOUTH OF EASTERN NECK ISLAND AT BUOY FIG-9; CHARACTERIZES LOWER ESTUARINE
ET5. 0A	38. 775	-75. 9683	CHOPTANK RIVER, MID-CHANNEL OF MOUTH OF KINGS CREEK
ET5. 1	38. 807059	-75. 911881	UPPER CHOPTANK RIVER AT GANEY WHARF, DOWNSTREAM OF CONFLUENCE; TUCKAHOE CIRCLE; TIDAL FRESH WATER STATION
ET5. 2	38. 580118	-76.057995	LOWER CHOPTANK RIVER NEAR ROUTE 50 BRIDGE AT CAMBRIDGE; CHARACTERIZES LOWER ESTUARINE
ET6. 1	38. 533449	-75. 71632	UPPER NANTICOKE RIVER NEAR ROUTE 313 BRIDGE AT SHARPTOWN; MID-CHANNEL; TIDAL FRESH WATER STATION
ET6. 2	38. 333454	-75. 882989	LOWER NANTICOKE RIVER; MID-CHANNEL NEAR BUOY FIG-11; CHARACTERIZES LOWER ESTUARINE
ET7. 1	38. 266788	-75. 791319	LOWER WICOMICO RIVER AT WHITEHEAVEN OFF OF FERRY ROAD; CHARACTERIZES LOWER ESTUARINE
ET8. 1	38. 14179	-75. 81632	MANOKIN RIVER AT UPPER EXTENT OF CHANNEL NEAR BUOY R-8; CHARACTERIZES LOWER ESTUARINE
ET9. 1	38. 058457	-75. 807987	BIG ANNEMESSEX RIVER, NORTHWEST OF LONG POINT; 250 YARDS EAST OF DAY BEACON G-5; CHARACTERIZES LOWER ESTUARINE
LE1. 1	38. 425124	-76. 601625	MID-CHANNEL; SSW OF JACK BAY SANDSPIT AND NORTHEAST OF SANDGATES; CHARACTERIZES LOWER ESTUARINE
LE1. 2	38. 378735	-76. 511065	MID-CHANNEL 1600 METERS; SOUTHWEST OF PATERSONS POINT; CHARACTERIZES LOWER ESTUARINE
LE1. 3	38. 34068	-76. 488009	MID-CHANNEL 1200 METERS DUE NORTH OF POINT PATIENCE; ENE OF HALF PONE POINT; CHARACTERIZES LOWER ESTUARINE
LE1. 4	38. 312069	-76. 42134	MID-CHANNEL BETWEEN DRUM POINT AND FISHING POINT; CHARACTERIZES LOWER ESTUARINE
LE2. 2	38. 166795	-76. 583013	POTOMAC RIVER OFF RAGGED POINT AT BUOY 51B; LOWER ESTUARINE ZONE
LE2. 3	38. 021516	-76. 347725	MOUTH OF POTOMAC RIVER; BOUNDARY BETWEEN CB5 AND LE2; RIVER CHANNEL
LE3. 1	37.760695	-76. 620789	VIMS SLACK WATER, BUOY #11
LE3. 2	37. 670418	-76. 554119	LONG POINT UPSTREAM OF BUOY #R8
LE3. 2N	37. 667362	-76. 540785	LONG POINT UPSTREAM OF BUOY #R8 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE3. 2S	37. 647085	-76. 569953	LONG POINT UPSTREAM OF BUOY #R8 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE3. 3	37. 693472	-76. 473005	CORROTOMAN RIVER, BUOY #R6
LE3. 3A	37. 666806	-76. 483005	CORROTOMAN RIVER, 1984 STATION LOCATION
LE3. 4	37. 633471	-76. 463004	ORCHARD PT, VIMS SLACK WATER
LE3. 4B	37. 624338	-76. 461871	ORCHARD PT, MOVED FROM VIMS SLACK WATER FOR BENTHIC SAMPLING
LE3. 6	37. 596667	-76. 2850	MOUTH OF THE RAPPAHANNOCK RIVER
LE3. 6N	37. 6068	-76. 282998	RAPPAHANNOCK RIVER NORTH SIDE

STATION	LATITUDE	LONGITUDE	STATION_DESCRIPTION
LE3. 6S	37. 572633	-76. 292998	RAPPAHANNOCK RIVER SOUTH SIDE
LE3. 7	37. 530556	-76. 306944	MOUTH OF THE PIANKATANK RIVER
LE4. 1	37. 418478	-76. 693013	VIMS SLACK WATER, #N44
LE4. 2	37. 291811	-76. 558008	VIMS SLACK WATER, #N34
LE4. 2N	37. 295422	-76. 558563	VIMS SLACK WATER, #N34 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE4. 2S	37. 275145	-76. 578564	VIMS SLACK WATER, #N34 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE4. 3	37. 235144	-76. 484672	YORK RIVER BETWEEN AMOCO AND SARAH CREEKS
LE4. 3B	37. 229544	-76. 472472	YORK RIVER BETWEEN AMOCO AND SARAH CREEKS
LE4. 3N	37. 253476	-76. 439115	YORK RIVER BETWEEN AMOCO AND SARAH CREEKS (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE4. 3S	37. 223477	-76. 432448	YORK RIVER BETWEEN AMOCO AND SARAH CREEKS (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE5. 1	37. 206813	-76. 651344	VIMS SLACK WATER, RED BUOY #36
LE5. 2	37.057925	-76. 583009	BUOY #C12-13
LE5. 2N	37.084314	-76. 573842	BUOY #C12-13 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE5. 2S	37.036259	-76. 604954	BUOY #C12-13 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
LE5. 3	36. 990148	-76. 459671	NH-15 JAMES RIVER BRIDGE, VIMS
LE5. 4	36. 955148	-76. 391335	BUOY #9, HAMPTON ROADS, VIMS
LE5. 5	36. 99681	-76. 303	MOUTH OF THE JAMES RIVER
LE5. 5-W	36. 99903	-76. 31328	MOUTH OF THE JAMES RIVER, WEST OF LE5. 5, STARTED IN 9/1/1996
LE5. 5A	36. 975703	-76. 287441	MOUTH OF THE JAMES RIVER
LE5. 5B	36. 971813	-76. 203549	MOUTH OF THE JAMES RIVER
LE5. 6	36. 903481	-76. 332998	RED BUOY #18
MAT0016	38. 56508	-77. 19345	ATTAWOMAN CREEK AT BLACK DAY BEACON 1; CHARACTERIZES TIDAL FRESH ZONE
RET1. 1	38. 490679	-76. 664128	MID-CHANNEL, 5000 METERS ENE OF LONG POINT; CHARACTERIZES TRANSITION ZONE
RET2. 1	38. 403458	-77. 269147	BUOY 27 SOUTHWEST OF SMITH POINT; CHARACTERIZES TRANSITION ZONE
RET2. 2	38. 35207	-77. 204423	BOUY 19 MID-CHANNEL OFF MARYLAND POINT; CHARACTERIZES TRANSITION ZONE
RET2. 3	38. 38818	-77. 130533	BOUY 13 OFF MOUTH OF NANJEMOY CREEK; CHARACTERIZES TRANSITION ZONE
RET2. 4	38. 362626	-76. 990529	MID-CHANNEL AT MORGANTOWN BRIDGE (U. S. ROUTE 301); CHARACTERIZES LOWER ESTUARINE
RET3. 1	37. 920136	-76. 821351	RAPPAHANNOCK RIVER NORTH OF BUOY R10, VIMS SLACK
RET3. 1N	37. 924302	-76. 812739	RAPPAHANNOCK RIVER NORTH OF BUOY R10, VIMS SLACK (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
RET3. 1S	37. 915413	-76. 824684	RAPPAHANNOCK RIVER NORTH OF BUOY R10, VIMS SLACK (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
RET3. 2	37. 808472	-76. 713014	RAPPAHANNOCK RIVER (VIMS SLACK WATER #N16)
RET4. 1	37. 525145	-76. 869686	PAMUNKEY RIVER AT SOUTHERN END OF LEE MARSH

STATION	LATITUDE	LONGITUDE S	STATION_DESCRIPTION
RET4. 2	37. 57181	-76.793017 N	MATTAPONI RIVER AT MUDDY POINT
RET4. 3	37. 506812	-76. 788017	YORK RIVER (VIMS SLACK WATER #C57)
RET4. 3N	37. 510418	-76. 558563	YORK RIVER, VIMS SLACK WATER #C57 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
RET4. 3S	37. 510423	-76. 799684	YORK RIVER, VIMS SLACK WATER #C57 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
RET5. 1	37.342369	-76. 872741 (CHICKAHOMINY RIVER, 1984-1988 ONLY
RET5. 1A	37. 312092	-76.872463	CHICKAHOMINY RIVER ABOVE SHIPYARD LANDING
RET5. 2	37. 210148	-76. 793015	SWANN'S POINT, JAMES RIVER WQMP STA#19
RET5. 2A	37. 207947	-76. 703879	SWANN'S POINT, JAMES RIVER WQMP STA#19- BENTHIC MONITORING STATION
RET5. 2N	37. 215426	-76. 778848	SWANN'S POINT, JAMES RIVER WQMP STA#19 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
RET5. 2S	37. 190426	-76. 791904	SWANN'S POINT, JAMES RIVER WQMP STA#19 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
SBE2	36. 812648	-76. 305774	SOUTHERN BRANCH ELIZABETH RIVER - ADJACENT TO ATLANTIC WOOD
SBE5	36. 769871	-76. 296051	SOUTHERN BRANCH ELIZABETH RIVER - ADJACENT TO VIRGINIA POWER
TF1.0	38. 955945	-76. 693022 F	FROM UPSTREAM SIDE OF THE MD ROUTE 50 BRIDGE; USGS GAGE NO. 59440; CHARACTERIZES TIDAL FRESH ZONE
TF1. 2	38. 814281	-76. 750802	MIDSTREAM AT WATER STREET IN UPPER MARLBORO; CHARACTERIZES TIDAL FRESH ZONE
TF1. 3	38. 810392	-76. 712189	MID-CHANNEL FROM MD ROUTE 4 BRIDGE NEAR WAYSONS CORNER; CHARACTERIZES TIDAL FRESH ZONE
TF1. 4	38. 772893	-76.709966 \	WEST SHORE FROM MAIN PIER AT JACKSON LANDING; CHARACTERIZES TIDAL FRESH ZONE
TF1. 5	38. 710117	-76. 701354	MID-CHANNEL AT NOTTINGHAM; CHARACTERIZES TIDAL FRESH ZONE
TF1. 6	38. 657896	-76.684408	MID-CHANNEL OFF WHARF AT LOWER MARLBORO; CHARACTERIZES TRANSITION ZONE
TF1. 7	38. 581787	-76. 680241 N	MID-CHANNEL ON A TRANSSECT OF APPROXIMATE 115 DEGREE FROM JACK'S CREEK; CHARACTERIZES TRANSITION ZONE
TF2. 1	38. 706505	-77.048588	AT FL BOUY 77 OFF MOUTH OF PISCATAWAY CREEK; CHARACTERIZES TIDAL FRESH ZONE
TF2. 2	38. 690672	-77. 11109 E	BOUY 67 OFF MOUTH OF PISCATAWAY CREEK; CHARACTERIZES TIDAL FRESH ZONE
TF2. 3	38. 608174	-77. 173869 E	BOUY N 54 MID-CHANNEL OFF INDIANHEAD; CHARACTERIZES TIDAL FRESH ZONE
TF2. 4	38. 529843	-77. 265259	BOUY 44 BETWEEN POSSUM POINT AND MOSS POINT; CHARACTERIZES TIDAL FRESH/TRANSITION ZONE
TF3. 0	38. 320128	-77.471373 F	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA (ROUTE 95)
TF3. 1A	38. 255407	-77. 41165 F	RAPPAHANNOCK RIVER BELOW MASSAPONAX STP
TF3. 1B	38. 245684	-77. 23359 F	RAPPAHANNOCK RIVER DOWNSTREAM OF FREDERICKSBURG, VA AT BUOY # 89
TF3. 1C	38. 282906	-77. 433595 F	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA
TF3. 1D	38. 287628	-77. 448595 F	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA
TF3. 1E	38. 245129	-77.326092 F	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, VA
TF3. 2	38. 174853	-77. 188311	RAPPAHANNOCK RIVER JUST DOWNSTREAM OF THE PORT ROYAL BRIDGE, #N74
TF3. 2A	38. 112077	-77.051917 F	RAPPAHANNOCK RIVER ONE MILE DOWNSTREAM OF THE PORT ROYAL BRIDGE

STATION	LATITUDE	LONGITUDE	STATION_DESCRIPTION
TF3. 3	38. 018745	-76. 908022	RAPPAHANNOCK RIVER AT JONES CREEK? (VIMS SLACK WATER #N40)
TF4. 0M	37.884027	-77. 163031	MATTAPONI RIVER NEAR BEULAHVILLE, VA (SOUTH OF BOILER RUN)
TF4. 0P	37.76792	-77. 331924	PAMUNKEY RIVER NEAR HANOVER, VA (NORTH OF BECHUMPS CREEK)
TF4. 1A	37.667365	-77. 136362	PAMUNKEY RIVER AT ROUTE 360 BRIDGE
TF4. 2	37. 579867	-77. 021635	PAMUNKEY RIVER AT WHITE HOUSE, VA
TF4. 4	37.72292	-77. 023581	MATTAPONI RIVER AT WALKERTON, VA
TF4. 4A	37. 653754	-76. 897743	MATTAPONI RIVER MIDWAY BETWEEN WEST POINT, VA AND WALKERTON, VA
TF5. 0A	37. 225428	-77. 476096	APPOMATTOX RIVER AT MATOACA, VA (SR600)
TF5. 0J	37.67098	-78. 085833	JAMES RIVER AT CARTERSVILLE, VA
TF5. 2	37. 530702	-77. 433594	JAMES RIVER AT MAYO'S BRIDGE (JRWQMP STATION #2)
TF5. 2A	37. 44987	-77. 419705	JAMES RIVER AT BUOY # 166
TF5. 3	37. 403204	-77. 391648	JAMES RIVER AT BUOY #157 (JRWQMP STATION #8)
TF5. 4	37. 311538	-77. 296645	APPOMATTOX RIVER AT BUOY #8 (JRWQMP STATION #20A)
TF5. 5	37. 312926	-77. 232754	JAMES RIVER AT RED BUOY #107 (JRWQMP STATION #13)
TF5. 5A	37. 300148	-77. 124694	JAMES RIVER AT BUOY # 91
TF5. 5AN	37. 309037	-77. 13025	JAMES RIVER AT BUOY # 91 (NORTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
TF5. 5AS	37. 298204	-77. 126916	JAMES RIVER AT BUOY # 91 (SOUTH SHORE) - SPECIAL 1994 NEAR-SHORE STUDY ONLY
TF5. 6	37. 27487	-76. 9883	JAMES RIVER NORTH OF BUOY #74, JAMES RIVER WOMP STATION #17
TF5. 6A	37. 221815	-76. 923297	JAMES RIVER - NEW LOCATION FOR TF5. 6?, 1994-1995 ONLY
WE4.1	37. 311667	-76. 346667	CENTRAL MOBJACK BAY
WE4. 2	37. 241667	-76. 386667	MOUTH OF THE YORK RIVER, MID-CHANNEL
WE4. 2N	37. 251809	-76. 390501	MOUTH OF THE YORK RIVER, NORTH SHORE
WE4. 2S	37.236809	-76. 386335	Mouth of the York River, south shore
WE4. 3	37. 176667	-76. 373333	MOUTH OF THE POQUOSON RIVER EAST OF YORK POINT
WE4.4	37. 11	-76. 293333	MOUTH OF THE BACK RIVER OFF NORTHEND POINT
WT1. 1	39. 433442	-76. 241344	BUSH RIVER, EAST OF GUM POINT AT FL G LT; CHARACTERIZES SALINITY TRANSITION
WT2. 1	39. 383441	-76. 341625	GUNPOWDER RIVER, 200 YARDS EAST OF OLIVER POINT AT BUOY G-"15"; CHARACTERIZES SALINITY TRANSITION
WT3. 1	39. 300108	-76. 399682	MIDDLE RIVER, EAST OF WILSON POINT AT CHANNEL JUNCTION DAY-MARKER; CHARACTERIZES SALINITY TRANSITION
WT4. 1	39. 283441	-76. 449683	BACK RIVER, EAST OF STANSBURY POINT AT DAY BEACON 12; CHARACTERIZES LOWER ESTUARINE
WT5. 1	39. 208442	-76. 524685	PATAPSCO RIVER, EAST OF HAWKINS POINT AT BUOY 5M; CHARACTERIZES LOWER ESTUARINE
WT6. 1	39. 07511	-76. 474683	MAGOTHY RIVER, NORTH OF SOUTH FERRY POINT AT BUOY FL R12; CHARACTERIZES LOWER ESTUARINE
WT7. 1	39. 016778	-76. 508017	SEVERN RIVER, 200 YARDS UPSTREAM OF ROUTE 50-301 BRIDGE; CHARACTERIZES LOWER ESTUARINE
STATION	LATITUDE	LONGITUDE	STATION_DESCRIPTION
---------	------------	-------------	--
WT8. 1	38. 933446	-76. 516349	SOUTH RIVER, SOUTH OF POPLAR POINT AT DAY MARKER R-"16"; CHARACTERIZES LOWER ESTUARINE
WT8. 2	38. 883448	-76. 533015	RHODE RIVER BETWEEN FLAT ISLAND AND BIG ISLAND; CHARACTERIZES LOWER ESTUARINE
WT8. 3	38. 850115	-76. 533014	WEST RIVER JUST UPSTREAM OF DAY MARKER R-"6"; CHARACTERIZES LOWER ESTUARINE
XCI4078	38. 23379	-75. 86963	ISLAND POINT IN CHANNEL AT BUOY FL 14 CHARACTERIZES LOWER ESTUARINE
XDJ9007	38. 48375	-75. 82098	SITE OF OLD RT 50 BRIDGE AT VIENNA (BRIDGE NO LONGER EXISTS) CHARACTERIZES TIDAL FRESH
XGG8251	38. 971224	-76. 247453	KENT ISLAND NARROW AT DRAWSPAN ON ROUTE 50 BRIDGE; CHARACTERIZES FREE-FLOWING FRESHWATER
XJH6680	39. 44317	-76. 032448	CHESAPEAKE BAY 2100 YARDS NORTHEAST OF SANDY POINT; MID-CHANNEL

Table C-43. Reported Units (UNITS).

This parameter describes the units in which a substance is measured. Some of the possible values for this field are as follows:

REPORTING_UNITS	REPORTING_UNITS_DESCRIPTION
1/M	UNITS PER METER
1/NM	UNITS PER NANOMETER
ABS	OPTICAL DENSITY
CFS	CUBIC FEET PER SECOND
COL/100 ML	NUMBER OF COLONIES PER 100 MILLILITERS
DEG C	DEGREES CELSIUS
FT	FEET
FTU	FORMAZIN UNITS
G/M**2	GRAMS PER SQUARE METER
JTU	JACKSON TURBIDITY UNITS
KG/DAY	KILOGRAMS PER DAY
KG/MONTH	KILOGRAMS PER MONTH
KG/YEAR	KILOGRAMS PER YEAR
KNOTS	SPEED
LBS/DAY	POUNDS PER DAY
LBS/MONTH	POUNDS PER DAY
LBS/YEAR	POUNDS PER YEAR
M	METERS
M/S	METERS PER SECOND
MEQ/L	MICRO EQUIVELENTS PER LITER
MG/L	MILLIGRAMS PER LITER
MPN/100 ML	MOST PROBABLE NUMBER PER 100 MILLILITERS
MV	MILLIVOLTS
NONE	PARAMETER HAS NO ASSOCIATED UNITS
NTU	NEPHELOMETRIC UNITS
PCT	PERCENT
PCT_FS	PERCENT FULL SCALE
PER SAMPLE	NUMBER OF INDIVIDUALS PER SAMPLE
PPT	PARTS PER THOUSAND
SU	SPECIFIC UNITS
TONS/DAY	TONS PER DAY
TONS/MONTH	TONS PER MONTH
TONS/YEAR	TONS PER YEAR
UE/M**2/S	MICROEINSTEINS PER METER SQUARED PER SECOND
UG/L	MICROGRAMS PER LITER
UM/M**2/S	MICROMOLES PER METER SQUARED PER SECOND
UMHOS/CM	MICROHMS PER CENTIMETER
VOLTS	VOLTAGE

Table C-44. Measurement Type (AEPENETR or VALUE_TYPE).

Measurement type code.

VALUE_TYPE DESCRIPTION

А	Actual measurement
E	Estimated measurement

APPENDIX D – CHESAPEAKE BAY PROGRAM DATA CENTER CONTACTS

June 2012

The Chesapeake Bay Program Data Center Staff

Individuals without Internet access, users wishing to obtain SAS conversion scripts or users wishing to obtain off line historical data holdings can request datasets directly from the Living Resources Data Manager. All requests must be made in writing or email. All data request can be sent to:

Jacqueline Johnson Living Resources Data Manager/Analyst EPA Chesapeake Bay Program Office 410 Severn Avenue Suite 112 Annapolis, MD 21403 Phone (local): 410-267-5729 Phone (long distance): 1-800-968-7229, ext. 75729 FAX: 410-267-5777 E-mail: jjohnson@chesapeakebay.net

Individuals without Internet access wishing to obtain GIS data products can request datasets directly from the Living Resources GIS Specialist or GIS Team leader. All requests must be made in writing. A data request form is provided in this appendix and can be sent to:

Howard Weinberg	John Wolf		
Living Resources GIS Specialist	GIS Team Leader		
Chesapeake Bay Program Office	Chesapeake Bay Program Office		
410 Severn Avenue Suite 112	410 Severn Avenue Suite	112	
Annapolis, Maryland 21403	Annapolis, Maryland 21403		
Phone (local): 410-267-5735	Phone (local):	410-267-5739	
Phone (long distance):1-800-968-7229	Phone (long distance):	1-800-968-7229	
ext. 75735	ext. 757	39	
FAX: 410-267-5777	FAX: 410-267-5777		
E-mail:hweinber@chesapeakebay.net	E-mail: jwolf@chesapeak	ebay.net	

The Chesapeake Bay Program, maintains a computer support desk to assist in resolving hardware and software difficulties with Data Center equipment. You can contact the help desk at:

 Phone (local):
 410-267-5769

 Phone (long distance):
 1-800-968-7229, ext. 75769

 FAX:
 410-267-5777

The Chesapeake Bay Program Data Center Manager is:

Brian Burch Data Center Manager Chesapeake Bay Program Data Center 410 Severn Avenue, Suite 112 Annapolis, MD 21403 Phone (long distance): 1-800-968-7229 EXT. 75736 Phone (local): 410-267-5739 FAX: 410-267-5666 E-mail: bburch@chesapeakebay.net

APPENDIX E – DATA SUBMITTERS' GUIDELINES

June 2012

This appendix describes the required reporting requirements for all data, which are collected as part of the Chesapeake Bay Monitoring Program. It includes the CBP guidelines and policies data reporting requirement from the document *Chesapeake Bay Program Guidance for Data Management*. In addition, there are specific biological data reporting requirements. The tables list the field formats, field names, attributes and descriptions for phytoplankton, zooplankton and benthos data, which are collected as part of the Chesapeake Bay monitoring program. All biological data deliverables are required to be sent as **comma delimited ASCII files** in formatted as described in this appendix. New in 2012 are recommended guidance for submission of voluntarily reported data. **Please note the guidance for data management will be subject to numerous changes as the Chesapeake Data Enterprise evolves and new requirements are developed. Please refer to**

http://www.epa.gov/region03/chesapeake/grants.htm for the most recent guidance.

CBP Data Submission Guidelines and Policies

This section discusses the guidelines and policies that must be followed by all agencies participating in data and information collection, processing and submittal to the Chesapeake Bay Program. This includes not only the agencies contracted for CBP work, but also any agency that the contracting agency has involved in these activities. The CBP has adopted these guidelines and policies in order to improve coordination, compatibility, standardization and information access throughout the Program. In addition to these guidelines and policies, any activities funded with federal government funds, must also adhere to applicable Federal Information Processing Standards (FIPS) (http://www.itl.nist.gov/div897/pubs/)

The Chesapeake Bay Program Guidance and Policies for Data, Information and Document Outputs Submission describes the guidelines and policies governing the submission of electronic outputs to the Chesapeake Bay Program. Electronic outputs can be submitted directly to the Chesapeake Bay Program Office or served on the Internet as part of the Chesapeake Information Management System (CIMS).

The full guidance document "Chesapeake Bay Program Guidance for Data Management" is available in electronic format on the web at http://www.chesapeakebay.net/data. Below are excerpts from that guidance as of 1 MARCH 2012.

Applicability

These guidelines and policies must be followed by all agencies, institutions, and organizations participating in data and information collection, processing, document generation and submittal to the Chesapeake Bay Program under grant or cooperative agreement funding. The Chesapeake Bay Program has adopted these guidelines and policies in order to improve coordination, compatibility, standardization, and information access across all the Bay Program partners. In addition to these guidelines and policies, any activities funded with Federal Government funds, must also adhere to applicable Federal Information Processing Standards (FIPS). Information on FIPS is located at http://www. itl. nist. gov/fipspubs/.

CBP Data/Information Management and Document Outputs Guidelines and Policies

The Chesapeake Bay Program has adopted the following guidelines and policies pertaining to data and information collection, processing, document generation and submittal to the Chesapeake Bay Program under grant or cooperative agreement funding. Any deviations from these guidelines and policies must be documented in the work plan and approved by the EPA Project Officer. Specific guidelines and policies include:

- Data, Information, and Document Outputs Requirements
- Output Serving vs. Submission Policy
- Locational Data Policy
- Map Coordinate Datum policy
- Map Coordinate Projection Guideline
- Metadata Policy
- Common Station Names Guideline
- Common Data Dictionary Guideline
- Common Database Design Guideline
- Calendar Date Policy
- Common Method Codes Guideline
- Data Reporting Guideline
- ITIS Biological Nomenclature Policy

Data, Information, and Document Outputs Requirements

Recipients are required to submit data, information, and document outputs in electronic format unless exceptions are specified in the grant or cooperative agreement work plan. Electronic outputs include but are not limited to reports, graphics, spreadsheets, imagery, data files, audio, and digital video products.

All data, information, and documents funded by the Chesapeake Bay Program whether through direct Chesapeake Bay Program funding or indirect matching funds are public information and shall be made available to the public unless there is a grant/cooperative agreement award condition that specifies otherwise. In addition, source data collected and processed in the creation of an output should also be submitted when practical. If source data is submitted, it should also be delivered in electronic format. All outputs must have associated metadata.

Document Type Text	Acceptable Formats Preferred: Microsoft Word (DOC) Portable Document Format (PDF) * ASCII Text Extensible Markup Language (XML)
Spreadsheet	Preferred: Microsoft Excel 97 or higher
	With Prior Approval: PageMaker Lotus 1-2-3 QuatroPro Tab/Comma delimited text files
Database	Preferred: Microsoft Access 97 or higher Microsoft SQL Server Extensible Markup Language (XML) ASCII delimited text files
Graphics	Preferred: TIFF GIF JPEG SVG PNG
Geographic Information System	Preferred: ESRI Spatial Database Engine- Personal or File geodatabase ESRI, grids, shape files With Prior Approval: KML, KMZ

* Data tables within PDF documents must be delivered in one of the spreadsheet formats.

Output Serving vs. Submission Policy

Recipients can submit outputs directly to the Chesapeake Bay Program or serve outputs from a data/web server. The preferred method for serving data is through an extensible markup language (XML) web service. Beginning October 2010, State recipients will submit specific data via EPA's National Environmental Information Exchange Network (NEIEN) state node based upon EPA-approved schemas and governed by trading partnership agreements where Chesapeake Bay partners have collaborated on data sets realizing burden reduction by eliminating redundant reporting requirements or where the State recipients are also recipients of NEIEN funding for such purposes. Recipients who plan to directly serve their grant/cooperative agreement outputs through their own data server/web site must have signed a CIMS Memorandum of Understanding with the Chesapeake Bay Program.

EPA National Geospatial Data Policy

The Chesapeake Bay Program adheres to the EPA's **national geospatial** data policy, which requires consistent use of latitude/longitude coordinates to identify the location of entities. **Please see** http://www.epa.gov/nerlesd1/gpc/pdf/epa_natl_geo_data_policy.pdf for a copy of the policy. All data, containing spatial and/or specific geographic locations, collected or assembled under a Chesapeake Bay Program grant or cooperative agreement or to be served on the Internet via the Chesapeake Information Management System, must have latitude and longitude information for each entity. Projects not creating or reporting spatial data, but-confined to a given project location(s), shall include the latitude/longitude of the location(s) within the study/final report.

In accordance with Chesapeake Bay Program locational data policy, the recipients agree to ensure that latitude and longitude coordinates (given in degrees and decimal degrees) are provided for all sites for which data are collected and accurate to the level required for the purpose of the application of the data. Field measured locations shall be accurate to the best practical geographic positioning method. Currently, Differential Global Positioning System (GPS) equipment can reliably provide coordinates accurate to within 10-25 meters (5 decimal places in decimal degrees), and is the preferred method of point location determination. Applications such as station monitoring locations should provide locational data with accuracy to that level. Other applications, such as digitizing points or watershed boundaries from Mylar media maps, cannot provide accuracy better than that of the original map, and cannot match the accuracy of GPS or surveyed locations. Remote sensing platforms can now collect sub-meter resolution data (6 decimal places in decimal degrees). Therefore, it is required that metadata be provided for all data and must include a measurement of the accuracy of the coordinates and the original source material and methods for obtaining the coordinates. It is the responsibility of data generators/providers to provide coordinates accurate to the level that is practical for the intended application, and to document the accuracy of those coordinates. The recipient further agrees to document, in writing, that locational data were derived using an approved method and recorded in accordance with federal regulations and other EPA requirements, noted in the "Authorities"

section of the EPA's policy. Recipient shall include in their work plan an assurance to comply with this requirement.

Map Coordinate Datum Policy

The Chesapeake Bay Program has adopted the policy that all data generated or collected using federal funds, submitted to the Chesapeake Bay Program, or served on the Internet via CIMS shall utilize either the North American Datum 1983 (NAD83) or World Geodetic System 1984 (WGS84) horizontal reference and the North American Vertical Datum 1988 (NAVD88) vertical reference. Most likely, organizations have been using NAD27 horizontal reference since USGS maps were historically created using this reference. The requirement to use NAD83 or WGS84 will require conversion of latitudes and longitudes using NAD27 to NAD83/WGS84. Metadata reporting requires specification of the horizontal and vertical datum where applicable.

Map Coordinate Projection Guideline

The Chesapeake Bay Program has adopted the policy that the standard projection for geographic information system (GIS) files maintained at the Chesapeake Bay Program Office (CBPO) shall be UTM Zone 18 (meters) for all data within the Chesapeake Bay basin. For larger or national GIS data files, the standard projection for GIS files maintained at the CBPO shall be Albers Conical Equal Area (meters). This policy was established to provide consistency in computing distance and area calculations, map shapes, and to facilitate database design and maintenance. GIS and data files containing spatial data must have coordinates reported as latitude and longitude (decimal degrees) as per the Locational Data Policy. Ideally, it is requested that information containing projected coordinates, also report coordinates in UTM Zone 18. Partner organizations that have historically maintained GIS files in another projection or coordinate system are exempt from this policy (unless they are developing or providing data products as part of a Chesapeake Bay Program initiative) since the effort to convert large historical holdings would be prohibitive.

Metadata Policy

The Chesapeake Bay Program has adopted the policy, consistent with Presidential Executive Order # 12906, that all data generated or collected using federal funds, submitted to the Chesapeake Bay Program, or served on the Internet, shall be accompanied by metadata (descriptive information about the data, often referred to as documentation) that fully conforms to the Federal Geographic Data Committee's requirements for metadata. Metadata created for Chesapeake Bay Program shall also be delivered to the EPA or other federal Clearinghouse as a requirement to fulfilling this policy and related grant or contract conditions. The FGDC guide for creating metadata is the *Content Standard for Digital Geospatial Metadata Workbook* (www. fgdc. gov/metadata).

The Chesapeake Bay Program has also adopted the policy that all data generated or collected using federal funds, submitted to the Chesapeake Bay Program, or served on the Internet, shall adhere to the National Biological Information Infrastructure's (NBII) Metadata Standard, where applicable. The NBII Metadata Standard, popular for environmental programs, provides extensions to the FGDC Metadata for documenting biological data and information. The NBII Biological Data Profile is located on the NBII website at: www.nbii.gov.

Data to be accessed on the Internet must follow the *CIMS Metadata Reporting Guidelines* established by the Chesapeake Bay Program. This Guideline was established to facilitate entering consistent, accurate metadata to ensure the information about the Chesapeake Bay will be easily available, and used appropriately. The *CIMS Metadata Reporting Guidelines* is also accessible on the CBP Data Hub Web Page at http://www.chesapeakebay.net/data.

Common Station Names Guideline

The Chesapeake Bay Program has adopted the guideline that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet via CIMS should utilize a consistent set of common station names for identifying and reporting monitoring station locations. It is the data provider's responsibility to comply with this guideline. The purpose of this guideline is to create one master table of station names, to the extent possible, to reduce confusion among cooperating agencies. The Station Names table, maintained on the Chesapeake Bay Program web site, should serve as the master list. Updates to this table that are required by data submitters shall be coordinated with the Information Management Subcommittee and/or the Monitoring and Assessment Subcommittee to maintain one consistent stations names list.

Common Data Dictionary Guideline

The Chesapeake Bay Program has adopted the guideline that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet should utilize the CBP common data dictionary for defining all data elements and units of measure. It is the, data provider's responsibility to comply with this policy. The purpose of this guideline is to create one data dictionary, to the extent possible, to reduce confusion among cooperating agencies. Updates required by data submitters to the dictionary shall be coordinated with the CIMS Workgroup to maintain one consistent data dictionary.

Common Database Design Guideline

The Chesapeake Bay Program has adopted the guideline that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet should utilize the CBP common database design for managing data. It is the data provider's responsibility to comply with this guideline. The purpose of this guideline is to use common database designs, to the extent possible, to simplify data formatting and sharing. Modifications to the common database design shall be coordinated with the CIMS Workgroup to maintain consistency in the database structure. If the Chesapeake Bay Program agencies do not have a pre-defined database that is acceptable for the work being conducted, the grantee/contractor should work with the funding agency to develop a database design that suits the requirements of the work. The database design should maintain maximum compatibility with other Chesapeake Bay Program database designs.

Calendar Date Policy

The Chesapeake Bay Program has adopted the standard that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet should adhere to the Federal Information Processing Standard, Representation for Calendar Date and Ordinal Date for Information Interchange (FIPS PUB 4- 1).

This standard states, "For purposes of electronic data interchange in any recorded form among U. S. Government agencies, National Institute of Standards and Technology (NIST) highly recommends that four-digit year elements be used". The year should encompass a two-digit century that precedes, and is contiguous with, a two-digit year-of-century (e. g., 1999, 2000, etc.). In addition, optional two-digit year time elements specified in ANSI X3. 30-1985(RI991) should not be used for the purposes of any data interchange among U. S. Government agencies. Therefore, it is required to report and store all dates using four digits for the year. In addition to facilitating data sharing, this requirement reduces the complications of processing date data after the millennium rollover at year 2000.

Common Method Codes Guideline

The Chesapeake Bay Program has adopted the guideline that all data generated or collected for, submitted to the CBP, or served on the Internet via CIMS should utilize the CBP Method Codes tables. The method codes are defined in the *Guide to using CBP Water Quality Monitoring Data*, and *The 2012 Users Guide to CBP Biological Monitoring Data*. Both documents are accessible through the CBP Data Hub at http://www.chesapeakebay.net/data. It is the data provider's responsibility to comply with this guideline. The purpose of this guideline is to use standardized method codes, to the extent possible, to simplify data coding and sharing. The methods used by monitoring agencies and analytical laboratories are critical in providing accurate measurements. Knowing the field and laboratory methods used is critical; therefore capturing the methods is a high priority during database development. Modifications to the CBP Method Codes shall be coordinated with the CIMS Workgroup to maintain consistency in the table contents. If CBP agencies do not have a pre-defined method code that is acceptable for the work being conducted, the grantee/contractor should work with the funding agency to develop method codes that suits the requirements of the work, while maintaining maximum compatibility with other CBP codes.

Numeric Data Reporting Guideline

The Chesapeake Bay Program has adopted the guideline that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet via CIMS should report numeric data elements at the same level of precision as that of the original measurement. The exact precision of recorded values must be maintained. This guideline has a significant impact on data analysis and the decisions made based on these analyses.

Values should not be zero-filled to greater precision than actually recorded. For instance, if the measured value is 0. 03, then the reported value should be 0. 03 @ and not 0. 030, which would imply precision to the third decimal place. For values that are recorded as below or above detection, a detection flag (in a separate data field) shall be used to identify the value as below or above the detection limit of the method, and the value shall be reported as the detectable limit. Values should be reported as zero, only if the measured or recorded value is zero. Values that are missing shall be reported as missing or null or nil, to identify values that were sampled but no value was obtained. Missing, null, or nil values are different than those that were never sampled, which should be recorded as a blank field, if they are recorded at all. It is the responsibility of the data submitter to record in the metadata, how measurements are coded, as well as the accuracy of the measurements.

It is important to note that some software tools used in data processing may represent the data internally with more precision than the original measurement, and/or may round the value. For instance, even though a value of 0. 3 was entered, the value may be stored and reported as 0. 299999.

ITIS Biological Nomenclature Policy

The Chesapeake Bay Program has adopted the policy that all data generated or collected for, submitted to the Chesapeake Bay Program, or served on the Internet via CIMS should utilize the ITIS (www. itis. usda. gov/) biological names for identifying and reporting species. It is the data provider's responsibility to comply with this policy. The purpose of this policy is to create one master table of species names, to the extent possible, to reduce confusion among cooperating agencies. The ITIS taxonomy table, maintained on the ITIS web site, should serve as the master list. Updates to this table that are required by data submitters shall be coordinated with the CIMS Workgroup to maintain one consistent species name list.

REFERENCE MATERIAL

Chesapeake Bay Program. *Chesapeake Bay Program Web page* (http://www.chesapeakebay.net). Chesapeake Bay Program, Annapolis, MD.

Chesapeake Bay Program. *Chesapeake Information Management System (CIMS) Web page* (<u>http://www.chesapeakebay.net/data</u> /). Chesapeake Bay Program, Annapolis, MD.

Chesapeake Bay Program. July 1997. Chesapeake Information Management System (CIMS) Metadata Reporting Guidelines. Chesapeake Bay Program, Annapolis, MD.

Federal Geographic Data Committee. June 1994. *Content Standards for Digital Geospatial Metadata*. (<u>http://www.fgdc.gov/metadata/csdgm</u>). Federal Geographic Data Committee. Washington, D. C.

Biological Data Working Group Federal Geographic Data Committee and USGS Biological Resources Division. June 1999. *Content Standard Digital Geospatial Metadata: Part 1 Biological Profile for National Biological Information Infrastructure Metadata* (<u>http://www.fgdc.gov/standards/projects/FGDC-standards/projects/metadata/biometadata/standards/projects/metadata/biometadata/b</u>

U. S. Environmental Protection Agency. July 1988. *Chesapeake Bay Living Resources Monitoring Plan, Agreement Commitment Report*. Chesapeake Bay Program, Annapolis, Maryland, 94pp.

U. S. Environmental Protection Agency. August 1989. *Living Resources Data Management Plan, Revision 1.* Chesapeake Bay Program, Annapolis, MD, CBP/TRS 33/89.

U. S. Environmental Protection Agency. March 1993. *Chesapeake Bay Program Data Management Plan.* Chesapeake Bay Program, Annapolis, MD.

U. S. Environmental Protection Agency. March 2012. *Guide to Using Chesapeake Bay Program Water Quality Monitoring Data*. Chesapeake Bay Program, Annapolis, MD.

U. S. Environmental Protection Agency. September 1996. *Designing an Integrated, Accessible Information Management System for the Chesapeake Bay Region*. Chesapeake Bay Program, Annapolis, MD. SAIC Contract 68-C4-0072, Work Assignment EC-1-8.

Required Data Format for Biological Monitoring Data Deliverables

Table E-1. Phytoplankton and Picoplankton Count Data

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	AGENCY	Character	è í	Data Collection Agency
2	COLTYPE	Character	2	Sample Collection Type
3	CRUISE	Character	6	Chesapeake Bay Program Cruise Number
4	SAMPLE_DATE	Character	10	Sampling Date (MM/DD/YY)
5	DEN_L	Numeric	12	Density of a Taxon (#Individual per liter)
6	GMETHOD	Character	3	Chesapeake Bay Program Gear Method Code
7	LAYER	Character	2	Layer of Water Column in which Sample was Taken
8	LBL	Character	45	Species Latin Name (with size groupings when taken)
9	MAXDEPTH	Numeric	8. 1	Maximum Depth of Composite Sample (meters)
10	R_DATE	Character	8	Version Date of Data (MM/DD/YYYY)
11	REP_NUM	Numeric	8	Replicate Number
12	REP_TYPE	Character	3	Replicate Type
13	SER_NUM	Character	12	Sample Serial Number
14	NODCCODE	Character	12	National Oceanographic Data Center Species Code
15	SPECCODE	Character	14	Agency Species Code
16	STATION	Character	8	Sampling Station
17	TDEN_L	Numeric	12	Total Density (# all individuals per liter)
18	TRIB_COD	Character	3	Tributary Code
19	TSN	Character	7	ITIS Taxon Serial Number

Table E-2. Phytoplankton and Picoplankton Event Data Files.

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	AGENCY	Character	6	Data Collection Agency
2	COLTYPE	Character	2	Collection Type
3	CRUISE	Character	6	Chesapeake Bay Program Cruise Number
4	SAMPLE_DATE	Character	10	Sampling Date (MM/DD/YYYY)
5	LAYER	Character	2	Layer of Water Column in which Sample was Taken
6	LATITUDE	Numeric	9.4	Latitude in Decimal Degrees(NAD83)
7	LONG ITUDE	Numeric	9.4	Longitude in Decimal Degrees (NAD83)
8	P_DEPTH	Numeric	8. 1	Composite Sample Cut Off Depth (meters)
9	R_DATE	Character	8	Data Version Date (MM/DD/YYYY)
10	SALZONE	Character	2	Salinity Zone
11	SAMVOL_L	Numeric	8. 1	Total Volume of Sample (liters)
12	SER_NUM	Character	12	Sample Serial Number
13	STATION	Character	8	Sampling Station
14	TDEPTH	Numeric	8. 1	Total Station Depth (meters)
15	SAMPLE_TIME	Character	8	Sample Collection Time (HHMM)
16	TRIB_COD	Character	3	Tributary Code

Table E-3. In Situ Fluorescence Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	AGENCY	Character	6	Data Collection Agency
2	CHL_F	Numeric	8. 2	Fluorescence Value (micrograms Chlorophyll a per liter)
3	CHL_F_D	Character	2	Chlorophyll a Detection Limit Code
4	CHL_F_M	Character	7	Chlorophyll a Method Code
5	CRUISE	Character	6	Chesapeake Bay Program Cruise Number
6	SAMPLE_DATE			
		Character	10	Sampling Date (MM/DD/YYYY)
7	LATITUDE	Numeric	9.4	Latitude in Decimal Degrees
8	LONGITUDE	Numeric	9.4	Longitude in Decimal Degrees
9	P_DEPTH	Numeric	8. 1	Composite Sample Cut Off Depth
10	R_DATE	Character	8	Version Date of Data (MM/DD/YYYY)
11	SALZONE	Character	2	Salinity Zone
12	SDEPTH	Numeric	8. 1	Sample Collection Depth (meters)
13	SER_NUM	Character	12	Sample Serial Number
14	STATION	Character	8	Sampling Station
15	TDEPTH	Numeric	8. 1	Total Station Depth (meters)
16	SAMPLE_TIME	Character	8	Sample Collection Time (HH:MM:SS)
17	TRIB_COD	Character	3	Tributary Code

Table E-4. Benthic Event Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Character	15	Sampling Station
2	SAMPLE_DATE	Date	10	Sampling Date (MM/DD/YYYY)
3	STRATUM	Character	4	Sampling Stratum or Tributary Designation
4	LATITUDE	Numeric	8.4	Latitude (Decimal Degrees) (NAD83)
5	LONGITUDE	Numeric	8.4	Longitude (Decimal Degrees) (NAD83)
6	SITE_TYPE	Character	2	Sampling Site Type
7	SAMPLE_TIME	Date/Time	8	Sample Collection Time (24 HH:MM)
8	SOURCE	Character	8	Data Collection Agency
9	TOTAL_DEPTH	Numeric	8. 1	Total Station Depth (Meters)
10	YEARCODE	Character	8	Sampling Year Code (optional)
11	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
12	STAEQ85	Character	8	Pre-1989 Station Designation (optional)
13	SITE	Character	8	Sampling Site Number (optional)
14	SAMPTYPE	Character	8	Sample Collection Type

Table E-5. Benthic Biota Event Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Character	15	Sampling Station
2	SAMPLE_DATE	Date	10	Sampling Date (MM/DD/YYYY)
3	SAMPLE_TIME	Date/Time	8	Sample Collection Time (24 HH:MM)
4	SAMPLE_NUMB	ER		
		Numeric	8	Sample Replicate Number
5	GMETHOD	Character	5	Chesapeake Bay Program Gear Method Code
6	NET_MESH	Numeric	8. 1	Screen Mesh Width (millimeter)
7	PENETR	Numeric	8.2	Sampling Gear Penetration Depth (centimeters)
9	SER_NUM	Character	12	Source Sample Serial Numbers
10	SOURCE	Character	8	Data Collection Agency
11	YEARCODE	Character	8	Sampling Year Code (optional)
12	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
13	STAEQ85	Character	8	Pre-1989 Station Designation (optional)
14	STAEQ85	Character	8	Post-1989 Station Designation (optional)
15	SITE	Character	8	Sampling Site Number (optional)

Table E-6. Tidal Benthic Count Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Text	15	Sampling Station
2	SAMPLE_DATE	Date	10	Sampling Date (MM/DD/YYYY)
3	SAMPLE_TIME	Date/Time	8	Sample Collection Time (24 HH:MM)
4	SAMPLE_NUMB	ER		
		Numeric	8	Sample Replicate Number
5	SPEC_CODE	Character	14	Agency Species Code
6	PARAMETER	Character	15	Sampling Parameter (Count)
7	VALUE	Numeric	8	Sampling Parameter Value
8	UNITS	Character	15	Reporting Units of Value (count/sample)
9	SER_NUM	Character	12	Sample Serial Number
10	SOURCE	Character	6	Data Collection Agency
11	YEARCODE	Character	8	Sampling Year Code (optional)
12	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
13	STAEQ85	Character	8	Pre-1989 Station Designation (optional)
14	STAEQ89	Character	8	Post-1989 Station Designation (optional)
15	SITE	Character	8	Sampling Site Number (optional)
16	SAMPTYPE	Character	8	Sample Collection Type
17	TSN	Character	7	ITIS Taxon Serial Number
18	GMETHOD	Character	5	Chesapeake Bay Program Gear Method Code
19	NET_MESH	Numeric	8. 1	Screen Mesh Width (millimeter)
20	SKIP	Character	1	Fragment \ Partial Organism Indicator

Table E-7. Benthic Biomass Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Character	15	Sampling Station
2	SAMPLE_DATE	Date	10	Sampling Date (MM/DD/YYYY)
3	SAMPLE_NUMB	ER		
		Numeric	8	Sample Replicate Number
4	VALUE_TYPE	Character	10	Actual or Estimated Ash Free Dry Weight
5	SPEC_CODE	Character	14	Agency Species Code
6	PARAMETER	Character	15	Sampling Parameter (AFDW))
7	VALUE	Numeric	8	Sampling Parameter Value
8	UNITS	Character	15	Reporting Units of Value (grams/sample)
9	SER_NUM	Character	12	Sample Serial Number
10	SOURCE	Character	6	Data Collection Agency
11	SAMPTYPE	Character	8	Sample Collection Type
12	GMETHOD	Character	5	Chesapeake Bay Program Gear Method Code
13	NET_MESH	Numeric	8. 1	Screen Mesh Width (millimeter)
14	TSN	Character	7	ITIS Taxon Serial Number
15	YEARCODE	Character	8	Sampling Year Code (optional)
16	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
17	STAEQ85	Character	8	Pre-1989 Station Designation (optional)
18	STAEQ89	Character	8	Post-1989 Station Designation (optional)
19	SITE	Character	8	Sampling Site Number (optional)

Table E-8. Benthic Water Quality Data Files

1 2 3 4	Field Name STATION SAMPLE_DATE SAMPLE_TIME SAMPLE_NUMB	Field Type Text Date Date/Time ER	Width (dec) 15 10 8	Descriptions Sampling Station Sampling Date (MM/DD/YYYY) Sample Collection Time (24 HH:MM)
		Numeric	8	Sample Replicate Number
5	SAMPLE_DEPTH	1		
		Numeric	8. 1	Sample Collection Depth
6	PARAMETER	Character	15	Sampling Parameter
7	VALUE	Numeric	8	Sampling Parameter Value
8	UNITS	Character	15	Reporting Units of Value
9	INS CODE	Character	5	Chesapeake Bay Program Instrument Code
10	SOURCE	Character	6	Data Collection Agency
11	YEARCODE	Character	8	Sampling Year Code (optional)
12	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
13	STAEQ85	Text	8	Pre-1989 Station Designation (optional)
14	STAEQ89	Character	8	Post-1989 Station Designation (optional)
15	SITE	Character	8	Sampling Site Number (optional)
16	SAMPTYPE	Character	8	Sample Collection Type

Table E-9. Benthic Sediment Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Text	15	Sampling Station
2	SAMPLE_DATE	Date	8	Sampling Date (MM/DD/YYYY)
3	SAMPLE_TIME	Date/Time	8	Sample Collection Time (24 HH:MM)
4	SAMPLE_NUMB	ER		
		Numeric	8	Sample Replicate Number
6	PARAMETER	Character	15	Sampling Parameter
7	VALUE	Numeric	8	Sampling Parameter Value
8	UNITS	Character	15	Reporting Units of Value
10	SOURCE	Character	6	Data Collection Agency
11	YEARCODE	Character	8	Sampling Year Code (optional)
12	CRUISENO	Character	8	Benthic Sampling Cruise Number (optional)
13	STAEQ85	Character	8	Pre-1989 Station Designation (optional)
14	STAEQ89	Character	8	Post-1989 Station Designation (optional)
15	SITE	Character	8	Sampling Site Number (optional)
16	SAMPTYPE	Character	8	Sample Collection Type

Table E-10. Benthic Index of Biotic Integrity Data Files

	Field	Field	Width	
	Name	Туре	(dec)	Descriptions
1	STATION	Text	15	Sampling Station
2	SAMPLE_DATE	Date	10	Sampling Date (MM/DD/YYYY)
3	SAMPLE_NUMB	ER		
		Numeric	8	Sample Replicate Number
4	IBI_SALZONE	Character	2	IBI Salinity Zone Designation
5	IBI_BOTTOM_T	/PE		
		Character	2	IBI Bottom Type Designation
6	IBI_PARAMETER	२		
		Character	15	IBI Sampling Parameter
7	IBI_VALUE	Numeric	8.4	IBI Sampling Parameter Value
8	IBI_SCORE	Numeric	8	IBI Sampling Parameter Score

Recommended Guidance for Voluntary Reporting of Non-Tidal Benthic Stream Monitoring Data

The Chesapeake Bay Program's non-tidal water quality workgroup (NTWQW) has developed a standardized regional benthic index of biotic integrity (Chessie B-IBI) that serves as an indicator of local stream health for the Chesapeake Bay watershed. The results from this work were published in the annual Chesapeake Bay's Bay Barometer. The underlying methodology used to develop this indicator built on previous efforts to create a standardized basin-wide B-IBI for the Potomac River watershed and is documented in a recent Interstate Commission on the Potomac River Basin report.

The Chessie B-IBI is an important tool for Chesapeake Bay water quality managers because it provides a comparable look across jurisdictional boundaries at the health of rivers and streams in the entire Chesapeake Bay watershed. The Chessie B-IBI assists managers and watershed groups in their ability to focus efforts to restore streams needing improvement and protect the quality of the healthiest streams. We are asking that you help continue to make this tool as useful as possible by contributing your most recent non-tidal benthic, water quality, and habitat data.

Periodically the Chesapeake Bay Program office will request the information and primary data listed in the attached document in Table E11. This includes site and sample collection information and measurements of key water quality, habitat, and benthic parameters. Please feel free to submit any other data that you feel is relevant. We can receive data sets in numerous data formats but would prefer comma-delimited text files or MS Access databases if you can export data to those formats. We also would like to request the most recent data documentation and quality assurance plans for these data sets, in order to accurately rename fields, correctly import data tables to the uniform database structure, and correctly calculate metrics. We intend to merge these datasets with those previously sent by your agency. Once this data is in our database, you have the ability to review that database at anytime. When this database is circulated to outside individuals, we will provide you documentation of who has received the data and any other information you would like regarding its release.

Table F11	Requested Station Information and Benthic Monitoring Data
	Requested station information and bentine monitoring bata.

Please send data for your entire jurisdiction. Bolded items denote key information needed, other information is useful but not required in the data sets if it is described in data documentation or can be captured with GIS tools. Please also send along any updated quality assurance plans.

	Description		
Site Information			
Station	Station identification		
Coordinates	Latitude and longitude (preferably in decimal degrees), projection and		
	datum		
Stream Name	Name of stream sampled		
Location	Descriptive information on station location		
Stream Gradient	Low gradient, high gradient		
Stream Type	e. g., coldwater, warm water, freestone, limestone, coastal plain		
Sample Collection			
Program	Program or study name (e. g. , MBSS, NAWQA)		
Study Objectives	Purpose of study (e.g., 303(d), stream health assessment)		
Site Type ¹	Site selection approach		
Sample Date	Date on which the sample was collected		
Sample Time	Time at which the sample was collected		
Sample Gear	Equipment used to collect sample (e. g., D-frame, Hydrolab)		
Sample ID	Sample Identifier		
Sample Number	Number of samples collected from the same site on the same date (i. e. , replicate		
	samples)		
Method 1	Field collection procedures (e. g. , RBP II, MACS, single-habitat, multi-habitat)		

Method 2	Water quality laboratory analysis			
Method 3	Water quality field collection method			
Habitat Parameters				
Parameter	Anthropogenic Alteration, Bank Stability, Channel Alteration, Habitat Heterogeneity (Riffle Frequency, Sinuosity, pool/glide/eddy), Instream Condition (Epifaunal substrate and cover), Riparian Zone, Substrate Quality (embeddedness, pool substrate), and any other habitat parameters collected			
Value	If the parameter is measured or calculated			
Units	Units of parameter value			
Score	If the parameter was scored			
Scoring Scale	Minimum and maximum score (e. g. , 0-10, 0-20)			
Habitat Type	Habitat sampled (e. g. , pool, riffle, run)			
Benthic Parameters				
Taxon	Taxon identification to family level (i. e. , Latin name)			
Count	Number of individuals counted or relative abundance			
TSN	ITIS Taxon Serial Number			
Replicate Number	Sample Replicate number(if applicable)			
Master Taxa list	Table that identifies taxa in the dataset			
Units	Unit of parameter value			
Count Method	Qualitative (e. g. , present/absent), quantitative (e. g. , #/m ²)			
Water Quality Parameters				
Parameter	pH , specific conductivity , DO , temperature , acid neutralizing capacity (ANC), nutrients, sediment, any other parameters collected synoptically with benthic sample			
Value	Value of parameter			
Unit	Unit of parameter value			
Replicate Number	Sample Replicate Number (If applicable)			
Detection Limit	Value of detection limit			

CBPO staff will be attempting to classify stream sampling sites according to the approach you used to identify and select them. These classifications will later be used to decide which sites can be grouped to represent watershed status and which can be used to track trends. We can make these classifications based on your monitoring program documentation, or you can insert the class you feel best represents the site selection approach.

Random:	A random or random-stratified design was applied to select the site for its first sampling (this can include sites that are resampled in subsequent years)
Random-reference:	A random or random-stratified design was applied to select the site for its first sampling; it was subsequently identified as a reference site
Targeted-baseline:	Tthe site is considered representative of some landscape feature and was selected for long-term monitoring purposes in a non-random fashion (includes sites established upstream of a known, suspected, or pending impairment)
Targeted-reference:	The site was selected for its first sampling because it was known or suspected of being reference quality
Targeted-systematic:	A systematic (grid, stream node, etc) sampling design was applied to select the site for its first sampling

Targeted-downstream:

The site was first sampled because of a known or suspected impairment or BMP implementation *upstream* of the site (site is usually part of a study)

Chesapeake Bay Program 410 Severn Avenue Annapolis, MD 21403 1-800-YOUR BAY http://www. chesapeakebay. net