Contaminant Exposure, Food Web Transfer and Potential Effects on Ospreys (*Pandion haliaetus*) in Chesapeake Bay

Rebecca Lazarus and Barnett Rattner

USGS-Patuxent Wildlife Research Center

Chesapeake Bay

NASA Satellite Image of the Bay on September 13, 2011 post –Irene http://www.nnvl.noaa.gov/images/high_resolution/836_2011091 2-TSM-Chesapeake.jpg

- Largest estuary in the U.S. watershed encompasses 6 states (64,299 mi²)
- Myriad of anthropogenic threats

- 72% of Bay & tidal segments impaired by toxics
- Overharvesting

Chesapeake Bay Ospreys

- Scattered information before the 1970's
- Population decline (pesticide DDT)
 - Low point early 70's 1,450 pairs
- Population recovery (DDT ban)
 - Mid-90's 3,500 pairs "Osprey garden of the world"
 - Nest substrate to foster growth

D. A. Ratcliffe. 1967. Nature 215:208-215.

Ospreys as a Sentinel

- High trophic level fish-eating species
- Adapts to human landscapes
- Tolerable of short-term nest disturbance
- Nests highly visible and easy to access
- Nests found across large spatial scales
- Long-lived
- Nest site fidelity
- Accumulate lipophilic contaminants
- Known sensitivity to many contaminants
- Worldwide distribution

Contaminants and Chesapeake Bay Ospreys

- 2000-2001 large-scale ecotoxicological study:
 - Osprey productivity adequate
 - p,p-DDE levels \downarrow
 - PCBs remained high
 - PBDE flame-retardants approach LOAEL for pipping & hatching success in kestrels

U.S. EPA Regions of Concern

Rationale and Objectives

- Decade since last large scale ecotoxicological study on ospreys in the Bay
- Limited exposure data for Bay avifauna
- May 2009 Presidential Chesapeake Bay Executive Order

Scientific Objectives

- 1. "Decadal re-evaluation of contaminant exposure and productivity of ospreys nesting in Chesapeake Bay Regions of Concern"
 Examine spatial and temporal changes in contaminant exposure and osprey productivity in ROCs.
- 2. "Chesapeake Bay fish-osprey food web: evaluation of contaminant exposure and genetic damage"
 - Reconstruct osprey dietary preferences and relate contaminant concentrations in fish to those in osprey eggs. Examine genetic damage as a biomarker of effect in osprey nestling whole blood.
- 3. "Exposure and food web transfer of pharmaceuticals in ospreys: predictive model and empirical data"
 - Conduct in silico and in situ analyses of exposure of ospreys to pharmaceuticals.

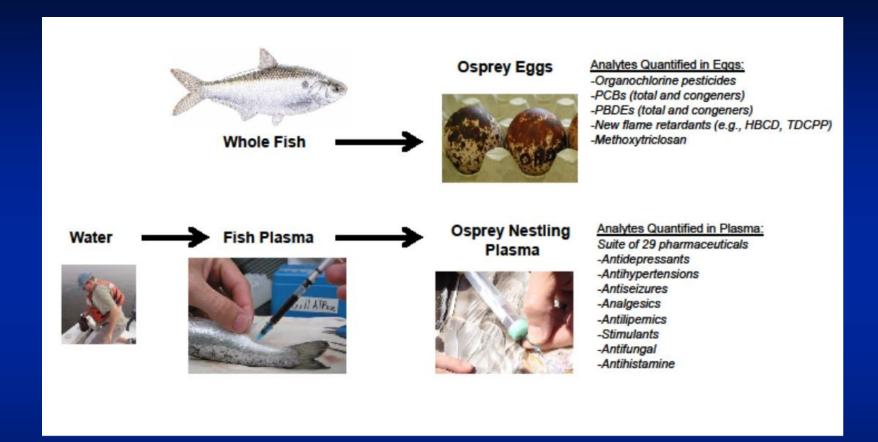
Scientific Objectives

 "Decadal re-evaluation of contaminant exposure and productivity of ospreys nesting in Chesapeake Bay Regions of Concern"

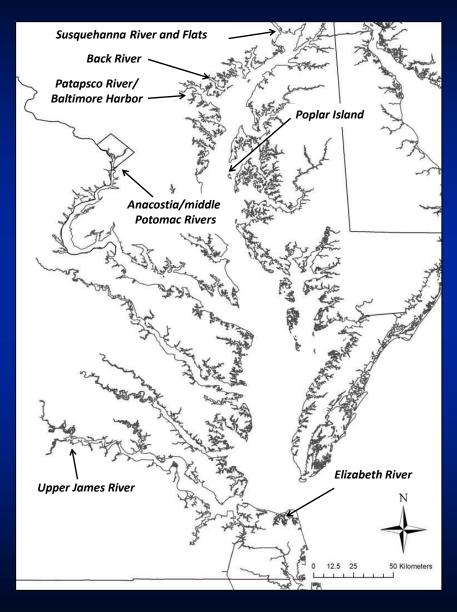
Lazarus, R.S., Rattner, B.A., McGowan, P.C., Hale, R.C., Schultz, S.L., Karouna-Renier, N.K., Ottinger, M.A., 2015a. Decadal re-evaluation of contaminant exposure and productivity of ospreys (Pandion haliaetus) nesting in Chesapeake Bay regions of concern. Environ. Pollut. 205: 278-290.

2. "Chesapeake Bay fish-osprey food web: evaluation of contaminant exposure and genetic damage"

Lazarus, R.S., Rattner, B.A., McGowan, P.C., Hale, R.C., Karouna-Renier, N.K., Erickson, R.A., Ottinger, M.A., 2016. Chesapeake Bay fish-osprey (Pandion haliaetus) food chain: evaluation of contaminant exposure and genetic damage. Environ. Toxicol. Chem. Accepted with Minor Revision.


3. "Exposure and food web transfer of pharmaceuticals in ospreys: predictive model and empirical data"

Lazarus, R.S., Rattner, B.A., Brooks, B.W., Du, B., McGowan, P.C., Blazer, V.S., Ottinger, M.A., 2015b. Exposure and food web transfer of pharmaceuticals in ospreys (Pandion haliaetus): predictive model and empirical data. Integ. Environ. Assess. Manag. 11, 118-129.


Research Objectives

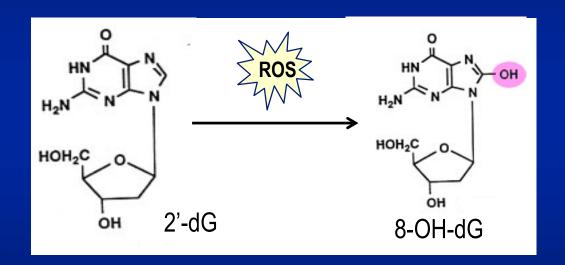
Sampling Sites (2011-2013)

- U.S. EPA Regions of Concern
 - Baltimore Harbor/Patapsco
 - Anacostia/middle Potomac
 - Elizabeth River
- Susquehanna River
- James River
- Back River
- Poplar Island reference site

Egg Sampling & Productivity

Collect 1 sample egg/nest, n=64 (Organochlorine pesticides , PCBs, flame retardants, methoxytriclosan)

Monitor fate of nest weekly (eggs, chicks, fledglings)



Nestling Blood Samples

 Collected nestling blood samples from 40-45 day old chicks to measure oxidative DNA damage (8-hydroxy-2'-deoxyguanosine) in nucleated red blood cells

Whole blood analyzed at PWRC (DNA/RNA oxidative damage EIA)

Food Web Sampling Methods

Reconstruction of osprey diet

Plasma/Whole Fish 2-3 dominant species in osprey diet (Size range: 25-35 cm)

Osprey nestling eggs/blood 40-45 day old nestlings for organics, pharmaceuticals, and genetic damage

Analytical Methods

 Eggs and whole fish analyzed at VIMS (GC-MS and UPLC-APPI/MS) for organochlorine pesticides, PCBs, PBDEs, alt-BFRs and methoxytriclosan

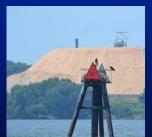
 Water, fish plasma and osprey nestling plasma analyzed at Baylor University (isotopic dilution LC-MS/MS)

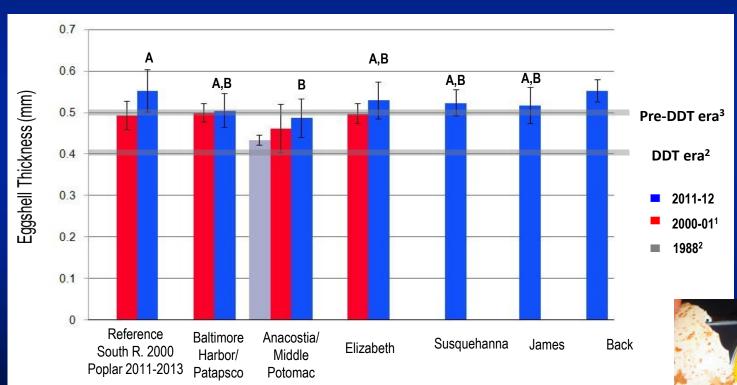
Results

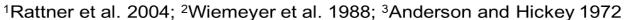
- 1. Osprey productivity
- 2. Eggshell thickness
- 3. Contaminants in Eggs
- 4. Genetic damage
- 5. Biomagnification factors
- 6. Pharmaceuticals

Osprey Productivity

Fledglings/active nest

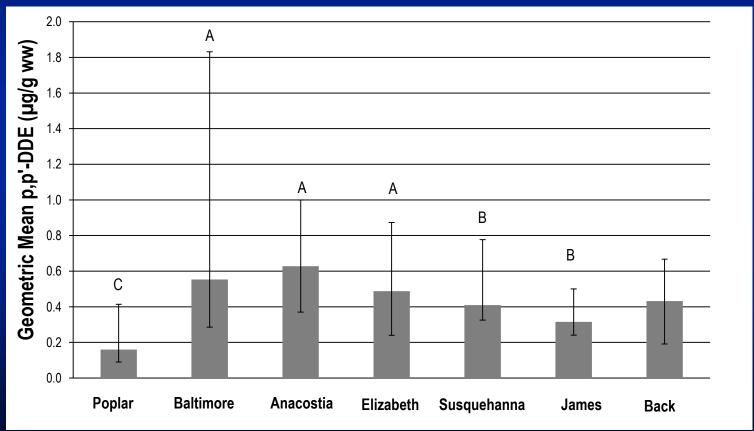

Site	2000-2001 (Rattner et al. 2004)	2011-2013 (Lazarus et al.)
Reference Site (South R. 2000-01 & Poplar I. 2011-13)	1.07	1.33
Baltimore Harbor/Patapsco (2011)	1.07	1.43
Anacostia/middle Potomac (2011)	0.88	1.23
Elizabeth River (2012)	1.53	1.00 (1.28)
Susquehanna River (2013)	-	1.80
James River (2012)	-	1.17
Back River (2013)		1.00





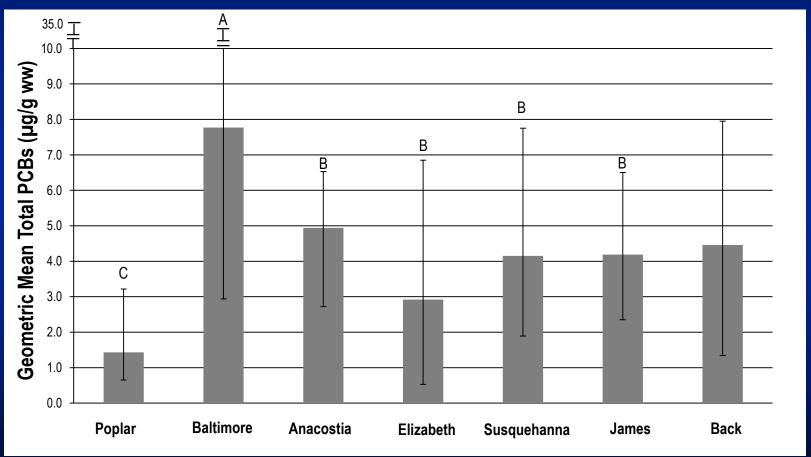
Eggshell Thickness

- No relationship between p,p'-DDE and eggshell thinning in this study
- Shells on Anacostia smaller compared to Poplar (p=0.0058)
- Of 30 eggs only 1 (Baltimore Harbor) had *p,p*-DDE residues in 95% CI for 10% shell thinning (1.2-3.0 μg/g ww)

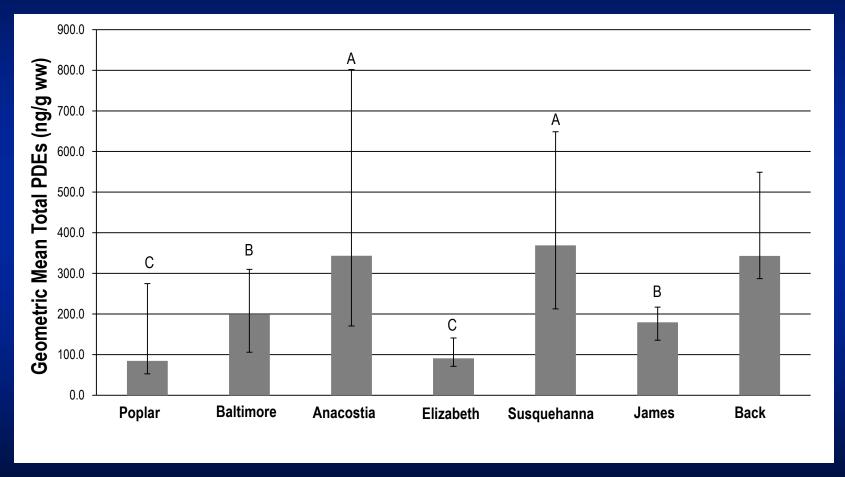


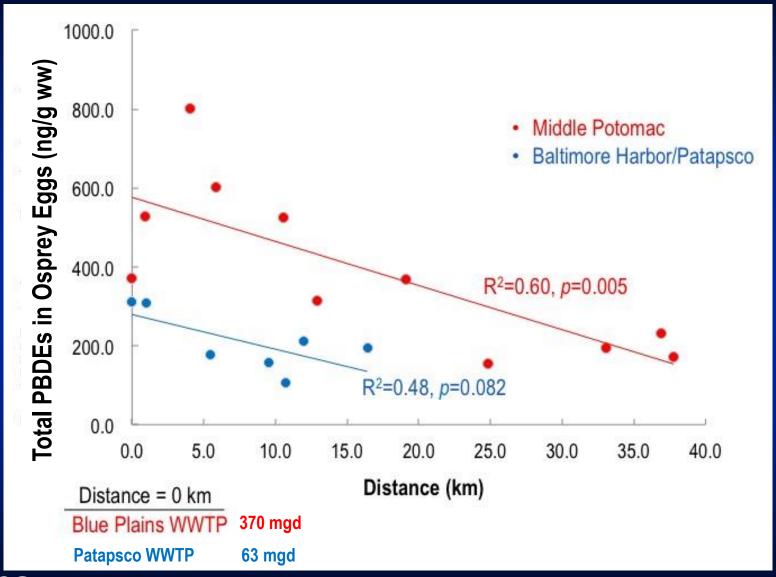
Organochlorine Pesticides in Osprey Eggs

- 8 of 10 of the most abundant pesticides declined by 10-75%
- p,p'-DDE greatest on Baltimore Harbor, Anacostia and Elizabeth Rivers.


 Greatest detect in Baltimore Harbor (1.83 μg/g ww)

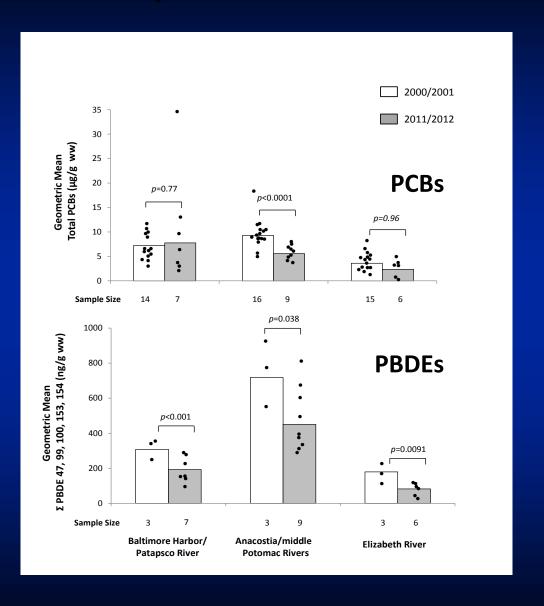
PCBs in Osprey Eggs


Concentrations at all sites were 3-4 times greater than at Poplar Island. Total PCBs were highest in Baltimore Harbor/Patapsco River (up to 35 μg/g ww in Curtis Creek).


PBDEs in Osprey Eggs

Total PBDEs highest on the Anacostia/middle Potomac Rivers (up to 802 ng/g ww) and the Susquehanna River (up to 649 ng/g ww).

PBDEs in Osprey Eggs: Spatial Patterns



A Decadal Perspective

p,p-DDE residues low (<1.83 μg/g ww) declined ~60% on the Anacostia/middle Potomac since 2000-2001

 PCBs declined significantly on Anacostia/middle
 Potomac...but not elsewhere

 PBDEs declined significantly across all sites, greatest values reported in vicinity of WWTP

Alt-BFRs in Osprey Eggs

- Detected 5/5 alt-BRFs (α -HBCD, BTBPE, DBDPE, TBB and TBPH) in eggs
- Most frequently detected in Baltimore Harbor/Patapsco River
- Highest residues of α-HBCD, BTBPE TBB and TBPH on the Anacostia/middle
 Potomac in the vicinity of Blue Plains WWTP
 - α-HBCD (max: 3.03 ng/g ww)
 - BTBPE (28.7 ng/g ww)
 - TBB (30.3 ng/g ww)
 - TBPH (7.37 ng/g ww)
- All alt-BFRs ~ ¼ of the PBDE flame retardants concentrations

Methoxytricolosan in Osprey Eggs

- Methoxytriclosan detected in all 9 samples from the Anacostia/middle Potomac (1.29-7.40 ng/g ww) & one sample from Baltimore Harbor (5.55 ng/g ww)
 - Highest in vicinity of Blue Plains
 - Second highest in Curtis Creek in vicinity of Patapsco WWTP

Potential marker of domestic wastewater

WARNING

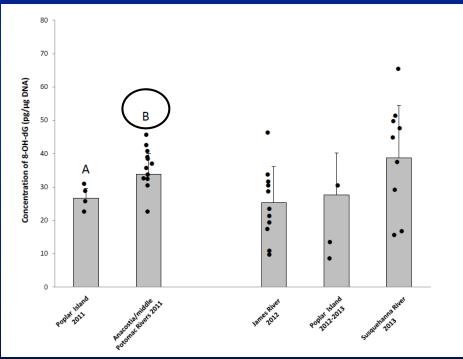
COMBINED SEWER OVERFLO DISCHARGE POINT

POLLUTION MAY OCCUR DURING RAINFALL

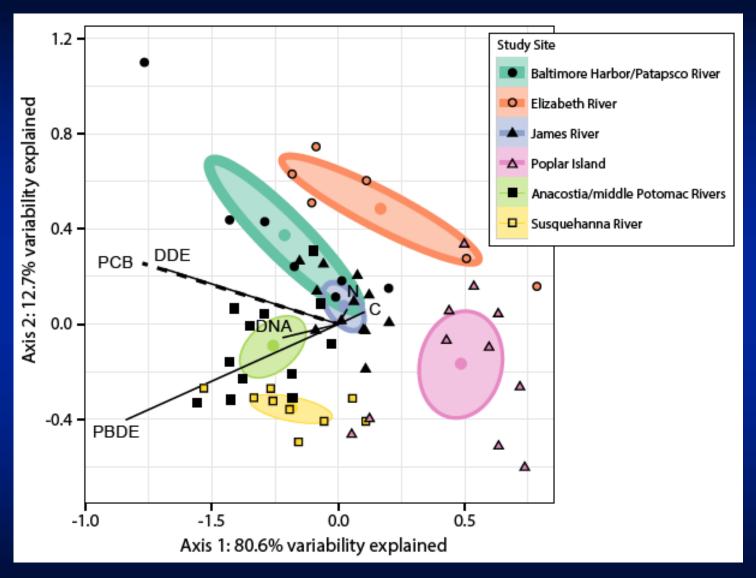
CSO OUTFALL NO. 019 PERMIT NO. DC 0021199

TO REPORT PROBLEMS CALL DISTRICT OF COLUMBIA WATER AND SEWER AUTHORITY TELEPHONE NO. (202) 612-3400


Blue Plains WWTP: Capacity: 370 MGD


Combined Sewer Overflow Anacostia River

DNA Damage (8'-OH-dG)


- Conducted assays in 2011 and in 2014 (2012 and 2013 data)
- Incidence of DNA damage higher in Baltimore Harbor/Patapsco River and on the Anacostia/middle Potomac River; outlier on Elizabeth R. in 2012, no rationale for its exclusion

Redundancy Analysis (RDA)

Reconstruction of Osprey Diet

> 2000 images from game cameras, direct observations and identification of prey remains

Poplar Island	Potomac River	James River	Susquehanna River
47.8% Rockfish	27.5% Gizzard Shad	19.8% Gizzard Shad	33.2% Gizzard Shad
44.3% Menhaden	23.6 % Catfish	79.3% Carp	30.4% Catfish
4.7% Perch	19.6% Carp		12.4% Carp

<5% Composed of other sp. crappie, needlefish, herring, bass, perch, eel, hogchocker

Contaminant Transfer in Food Web

Biomagnification Factor (BMF)

total PCBs x 23.4 ww

total PBDEs x 17.9 ww BDE 47 x 18.9 ww BDE 100 x 20.5

p,p'-DDE x 16.5 ww

BDE 99 x 14.2 ww

p,p'-DDD, cis-chlordane, trans-chlordane, cis-nonachlor, trans-nonachlor alt-BFRs and methoxytriclosan had BMFs < 5

Similar on both a wet and lipid weight basis

Pharmaceuticals in the Environment

- \sim 4.02 billion R_x in U.S. per year
- Top prescribed: Zoloft®, Celexa®, Xanax®
- Top 4 grossing: Lipitor®, Plavix ®, Nexium® and Abilify®

Photo credit: www.healthyconsumer.com

- Enter environment from many sources
- Detected in many matrices

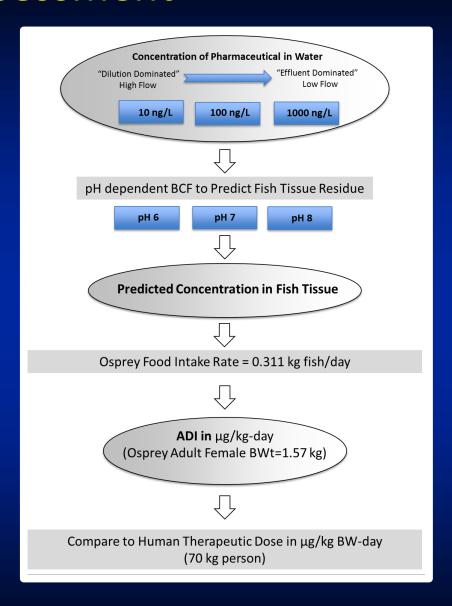
Photo credit: http://www.york.ac.uk/environment

Pharmaceuticals in Wildlife

Secondary poisoning by diclofenac

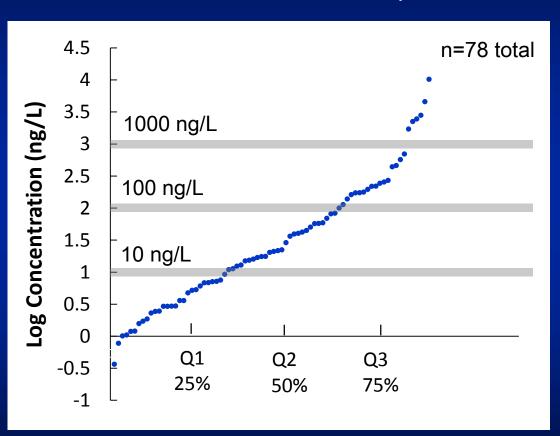
Population-level effects

Species endangerment


Photo credit: www.conservationindia.org

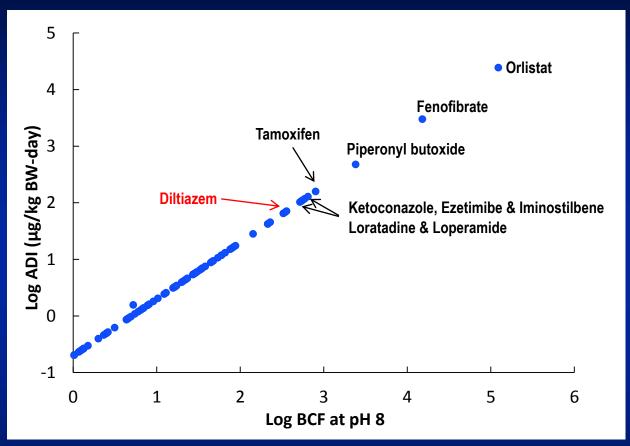
In Silico Assessment

Environmentally relevant screening-level exposure model in food web framework to identify those that warrant further examination


- Key characteristics for bioaccumulation:
 - Low dilution scenario
 - High bioconcentration factor (BCF) at environmental pH
 - Limited metabolism

Exposure Assessment Environmentally Realistic

Concentrations of 18/24 analytes detected in water across 4 study sites

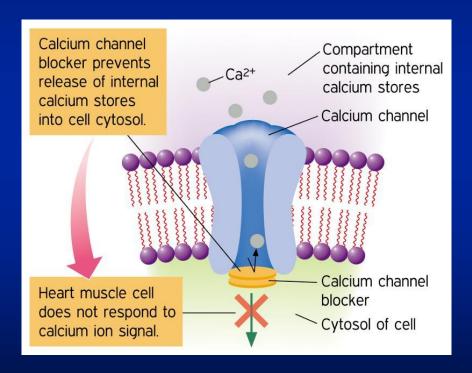

Average pH

Poplar Island (1 site)	6.81
Anacostia/Potomac (3 sites)	7.56
James River (3 sites)	7.75
Back River (1 site)	7.88

In Silico Assessment

BCF vs. ADI for 83 analytes BCF > 1.00 at 1,000 ng/L pH 8

4/9 easily available over the counter and 2/9 rank high in sales


In situ Empirical Findings

			Fish Plasma			Osprey Nestling			
Class	Analytes	Water	Catfish sp.	Gizzard Shad	Carp	White Perch	Rockfish	Atlantic Menhaden	Plasma
Analgesic	Acetaminophen	✓							
	Codeine	\checkmark		\checkmark					
Antibiotics	Sulfamethoxazole	\checkmark							
	Trimethoprim	\checkmark							
	Erythromycin	\checkmark							
Anticoagulant	Warfarin	\checkmark							
Antihistamine	Diphenhydramine	✓	✓	\checkmark	\checkmark	\checkmark	\checkmark		
Antihypertensives	Propanolol	✓							
	Diltiazem	\checkmark	✓	\checkmark	\checkmark	✓	✓		✓
	Atenolol	\checkmark		\checkmark					
Anti-inflammatories	Diclofenac	\checkmark							
	Celecoxib	\checkmark					\checkmark		
Antilipemic	Gemfibrozil	\checkmark							
Antiseizure	Carbamazepine	\checkmark	✓	\checkmark	\checkmark		\checkmark		
Artificial Sweetener	Sucralose	\checkmark		\checkmark					
Psychostimulant	Methylphenidate	\checkmark							
	Diazepam	\checkmark							
Parasiticide	Ivermectin								
Stimulant	Caffeine	\checkmark	✓						
Antidepressants	Paroxetine								
	Fluoxetine								
	Norflyoxetine								
	Sertraline								
	Desmethylsertraline								



Diltiazem/Cardiazem

- Anti-hypertensive drug
- Ca²⁺ channel blocker

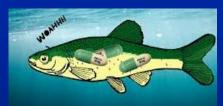
Diltiazem in Nestling Plasma

Diltiazem detected in plasma from all osprey nestlings

		2011		201	12	2013		
	Poplar (2011-2013)	Baltimore/ Patapsco	Anacostia/ Potomac	Elizabeth	James	Back	Susquehanna	
Geo Mean (ng/mL)	2.19 ^c	3.79 ^{A,B}	4.52 ^A	0.97 ^D	0.91 ^D	2.35 ^{B,C}	1.43 ^{C,D}	
Range	0.605-4.46	2.89-5.11	3.50- 8.63	0.56-1.32	0.54-1.36	1.05-4.28	1.05-2.09	
detects/n	13/13	8/8	13/13	6/6	12/12	7/7	10/10	

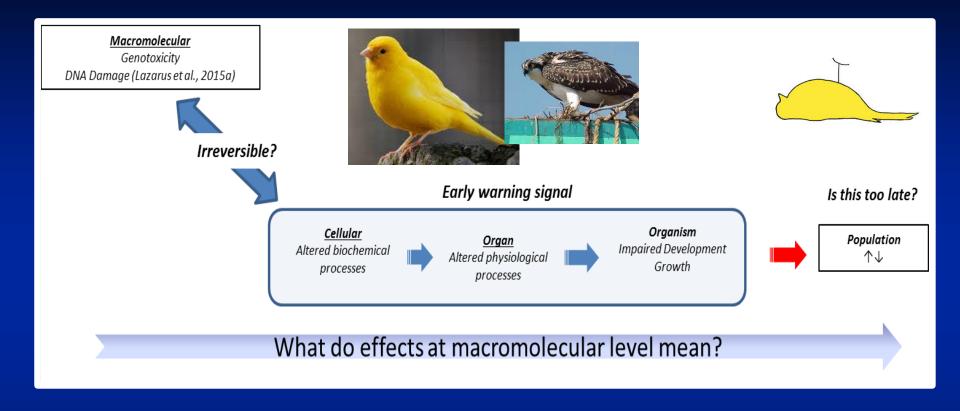
C_{max} (Human): 30 ng/mL

Superscripts indicate differences in [diltiazem], p < 0.04


Diltiazem in Wildlife

Although below HTD, findings indicate it can bioaccumulate water→ fish (26.1x) → osprey (4x)

- Cases of fatalities in humans due to overdose $(2,500-8,000 \mu g/L > HTD of 30 \mu g/L)$
- Paucity of effect threshold data for birds and lower vertebrates make interpretation challenging
- Application of our knowledge of mammalian pharmacology, but many uncertainties



Hierarchy of Effects

Can our "canary in the coal mine" be at the cellular or macromolecular level?

Final Conclusions

- Reproduction adequate to sustain population
- DDE levels ↓ in eggs & no evidence of shell thinning
- No relationship between contaminants and osprey productivity in the Bay
- PCB concentrations remained unchanged or slightly lower BUT there are a few high values in industrialized areas (i.e., Baltimore Harbor)
- PBDEs ↓ ~40% across all sites; remain elevated near WWTP; <adverse effect levels
- Diltiazem detected in osprey plasma but limited knowledge of effects
 - In Silco tools help identify drugs that may warrant further attention
- Marginal evidence of DNA damage in ROCs... could have subtle effects on fitness
- Ospreys have demonstrated their resilience in the face of anthropogenic threats

Acknowledgements

Baylor University
College of William and Mary
USGS Chesapeake Bay Program
USFWS-Chesapeake Bay and Virginia Field Offices
USGS-Leetown Science Center
USGS-Patuxent Wildlife Research Center

University of Maryland
Virginia Commonwealth University
Virginia Institute of Marine Sciences

