AN ECOSYSTEM APPROACH TO LIVING SHORELINE PROJECT DESIGN: RESTORATION OF PENNIMAN SPIT, YORK RIVER*

Pls: Rom Lipcius¹, Rochelle Seitz¹, Scott Hardaway¹

Partners: Tom Olexa², Kevin Du Bois³, Dorothy Geyer⁴, Andrew Larkin⁵

Staff: Donna Milligan¹, Katie Knick¹, Mike Seebo¹, Gabby Saluta¹, Alison Smith¹

¹ Virginia Institute of Marine Science, William & Mary

² Naval Weapons Station Yorktown, US Department of Defense

³ Chesapeake Bay Program, US Department of Defense

⁴ Colonial National Historical Park, US National Park Service

⁵ Chesapeake Bay Office, NOAA

* Funded by Chesapeake Bay Trust

Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

LOCATION: PENNIMAN SPIT, YORK RIVER

Figure 1. Shore change at Penniman Spit on the York River (Milligan et al., 2010; Milligan et al., 2018).

ECOLOGICAL CHANGES: PENNIMAN SPIT, YORK RIVER

- Salt marsh/shoreline erosion under high wave energy conditions and sea level rise
- Loss of protection for lower energy, productive ecotone-inner cove and creek systems
- Loss of nursery habitat for blue crab, white shrimp, and finfish
- Loss of trophic subsidies from marsh, cove and creek residents (e.g. clams, mummichogs, silversides, crabs, shrimp) to higher trophic levels
- Loss of oyster reefs and habitat important for ecosystem and tourism



Figure 1. Shore change at Penniman Spit on the York River (Milligan et al., 2010; Milligan et al., 2018).

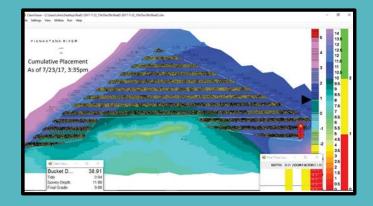
Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

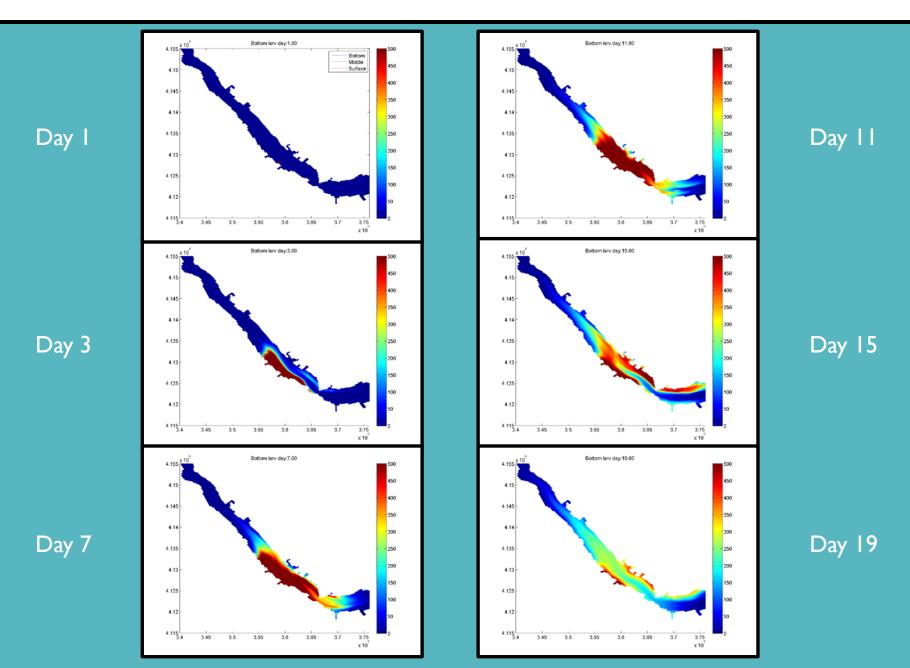
- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

STRUCTURES EFFECTIVE FOR SHORELINE PROTECTION


Figure 2. Draft oyster reef sill system for Penniman Spit.

STRUCTURES EFFECTIVE IN OYSTER RESTORATION

Figure 3. Oysters colonizing appropriately-sized granite on the sill below Mean High Water.


Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

STRUCTURES BENEFITTING OYSTER RESTORATION IN YORK RIVER

Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

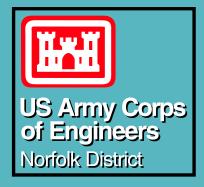
-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

Deliverable 2. Description of chosen site and rationale for methodology based on physical characteristics of site

- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration

-involve public landowners

- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance


PARTNERSHIPS/FUNDING

Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

ENHANCE ECOSYSTEM AND CLIMATE RESILIENCY; DEMONSTRATION PROJECT

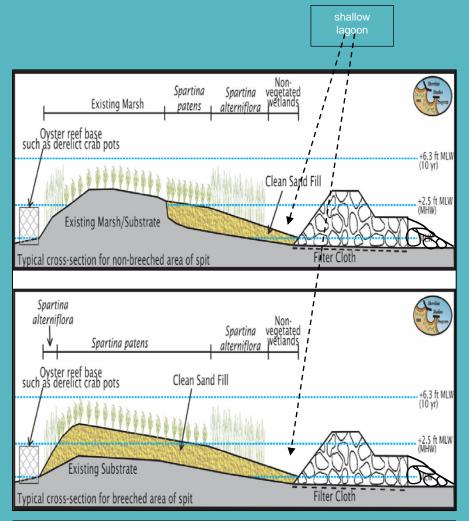
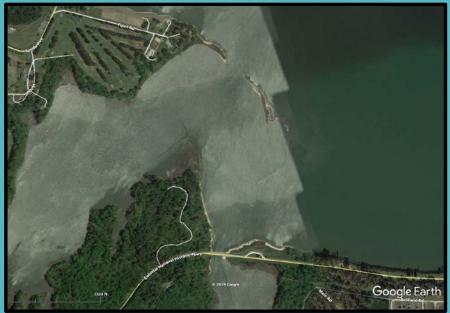



Figure 7. Draft schematic of a living shoreline applicable to Penniman Spit and various locations throughout the York River and Chesapeake Bay. The right side of the sill faces the river, and the rocks will be rearranged such that there is a slowly grading slope to provide shallow-water habitat for juvenile fish and crabs, as indicated by the additional (blue) rock substrate near present Mean Low Water (MLW).

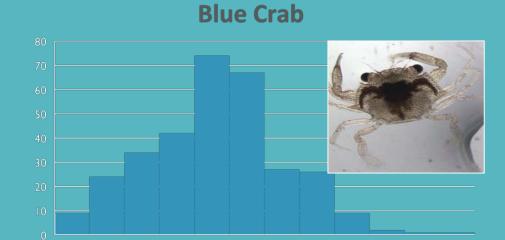
Objective I: Develop a shovel-ready living shoreline restoration plan and monitoring protocols.

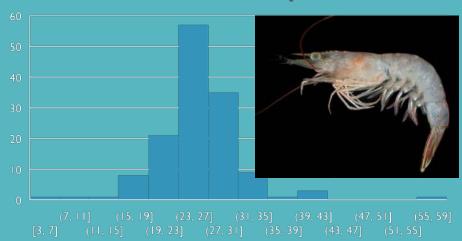
Deliverable 1. Literature review of design applications and effectiveness

-emphasis on design features that optimize oyster restoration and ecosystem benefits over the long term, which most reviews have not distinguished from short-term effects

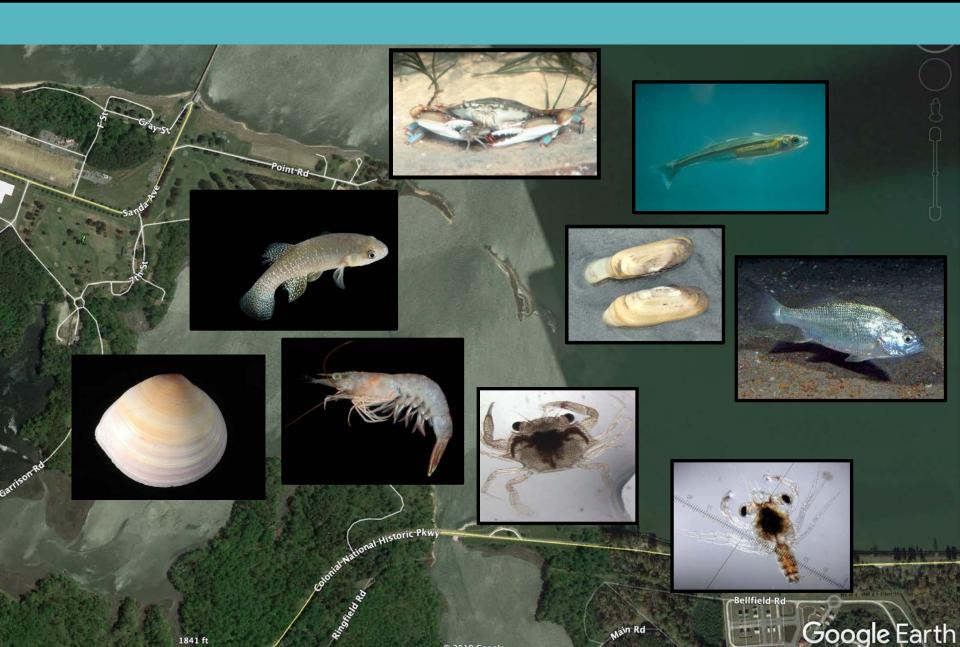
- -use structures that have been proven to succeed in marsh/shoreline protection under highenergy conditions
- -use structures that have been proven to succeed in oyster restoration and placed in locations benefitting York River oyster restoration
- -involve public landowners
- -include elements that enhance the ecosystem, especially those addressing CBP outcomes for blue crab, fish habitat, oyster, wetlands (i.e., salt marshes), and climate resiliency
- -be transferable to other York River sites and in the Bay
- -serve as a demonstration project visible to the general public
- -(i) site analysis, (ii) pre-construction monitoring, (iii) permit approval and legal compliance

BACI DESIGN; PRE-CONSTRUCTION MONITORING





BACI DESIGN; PRE-CONSTRUCTION MONITORING


Seines	Abundance	Benthic Suctions	Abundance
Atlantic silverside	1624	Spionids	2400
mummichog	986	G. gemma	2155
striped killifish	943	M. lateralis	1664
blue crab	327	I. recurvum	1318
bay anchovy	176	P. pholadiformis	1109
white shrimp	139	L. balthica	1082
croaker	74	L. culveri	1036
silver perch	23	O. fusiformis	1009
kingfish	17	Nemerteans	991
pipefish	13	C. plana	873
northern kingfish	9	Sabellid worms	782
white perch	8	P. gouldi	764
naked goby	8	T. plebeius	709
tongue fish	6	Capitellids	682
spade fish	5	Un. Amphipod	627
skilletfish	4	G. dibranchiata	573
mud crabs	4	G. demissa	464
spot	3	Leitoscoloplos	464
seahorse	2	Phonronids	464
sheepshead	2	L. setiferus	464
speckled trout	1	A. mitchelli	436
		L. medusa	436
		N. schmitz	355
		S. oculatus	355
		tunicate	355
		N. succinea	273
		D. cuprea	273
		G. bosci	245
		C. sapidus	164
		P. vibex	109
		U. affinis	27

White Shrimp

BACI DESIGN; PRE-CONSTRUCTION MONITORING OF AN ECOTONE

MOVING FORWARD

- Implementation
 - Monitoring
- Adaptive management
 - Funding
 - Public support
 - Federal support
 - State support

