

Valuation and Payment For Ecosystem Services From Large Scale Oyster Restoration

Doug Lipton & Geret DePiper*
NOAA Fisheries

Chesapeake Bay Fisheries Goal Implementation
Team
December 3, 2013

*The opinions expressed in this
presentation are solely the authors,
and do not represent those of NOAA
Fisheries

Outline

- ▶ Overview of Value of Ecosystem Services
- ▶ Focus on Nutrient Removal
- ▶ Payment for Ecosystem Services

Oyster Ecosystem Services

- ▶ Food (The Oyster Fishery)
- ▶ Habitat
 - For Oysters (see above)
 - For Other Commercially Valuable Species
 - For Other Recreationally Valuable Species
 - For Other Species That Indirectly Support the Above
- ▶ Shoreline Stabilization/Protection
- ▶ Nutrient Cycling/Removal
 - Sequestration
 - Denitrification
- ▶ Other Estuarine Processes
 - e.g. Link to jellyfish population – swimming, boating, waterfront values; Water clarity
- ▶ Non-Use Value

Recreationally Valuable Habitat

- ▶ Hicks, Haab and Lipton (2004)
 - Used NMFS MRFSS Survey data

Table 6. Total Yearly Fishing Trips and WTP for the Oyster Restoration Project in the Chesapeake Bay (2003).

Mode	Trips	Scenario 1		Scenario 2	
		WTP per Trip	Total WTP	WTP per Trip	Total WTP
Shore	1,801,742	\$0.08	\$131,386	\$0.20	\$328,465
Private Rental	3,688,236	\$0.13	\$458,132	\$1.32	\$4,651,803
Party Charter	171,360	\$0.31	\$48,741	\$0.79	\$124,211
Totals			\$638,259		\$5,104,478

Non-Use Value: Willingness-to-pay for Oyster Reef Restoration

- ▶ Hicks, Haab and Lipton
 - Special Add-On Phone survey questions from MRFSS (Also Mail Survey – not presented here)

TABLE 6b					
Aggregate Median Willingness to Pay Per Acre from Phone Survey: By State					
	Delaware	Maryland	New Jersey	North Carolina	Virginia
1000 Acres	\$23,547	\$160,764	\$141,194	\$15,244	\$92,146
2500 Acres	\$14,913	\$119,203	\$99,311	\$10,911	\$63,580
5000 Acres	\$6,288	\$56,788	\$40,367	\$5,981	\$27,796
10000 Acres	\$2,804	\$19,637	\$16,735	\$3,378	\$12,736

Focus on Nutrient Cycling/Removal

- ▶ TMDL is a game-changer
 - w/o TMDL
 - Nutrient Cycling/Removal Benefit
 - Difficult to link to things we value (e.g., more fish)
 - Public good
 - w/TMDL
 - Nutrient caps are presumably set to capture public good benefits
 - Allowance for increased assimilative capacity and/or nutrient trading facilitates markets and payment for ecosystem services

Maximize Net Economic Value

Value =

Harvest + Denitrification + Sequestration

$$\text{Harvest} = (p_H - c_H (1 - (\frac{O - x}{K}))x$$

$$\text{Denitrification} = p_N \theta(\frac{O - x}{K})$$

$$\text{Sequestration} = p_N [O(\frac{r(1 - \frac{O}{K}) + \varepsilon - \mu}{1 + \exp(-h(\frac{O}{2} + B - S))} - \varepsilon) - x]$$

There Are Complex Dynamics (from Jordan–Cooley et al. 2011)

Oysters

$$\frac{dO}{dt} = O \left[\frac{r \left(1 - \frac{O}{k} \right) + \varepsilon - \mu}{1 + \exp \left[-h \left(\frac{O}{2} + B - S \right) \right]} - \varepsilon \right] - x$$

Shell

$$\frac{dB}{dt} = O \left[\frac{\mu - \varepsilon}{1 + \exp \left[-h \left(\frac{O}{2} + B - S \right) \right]} + \varepsilon \right] - \gamma B$$

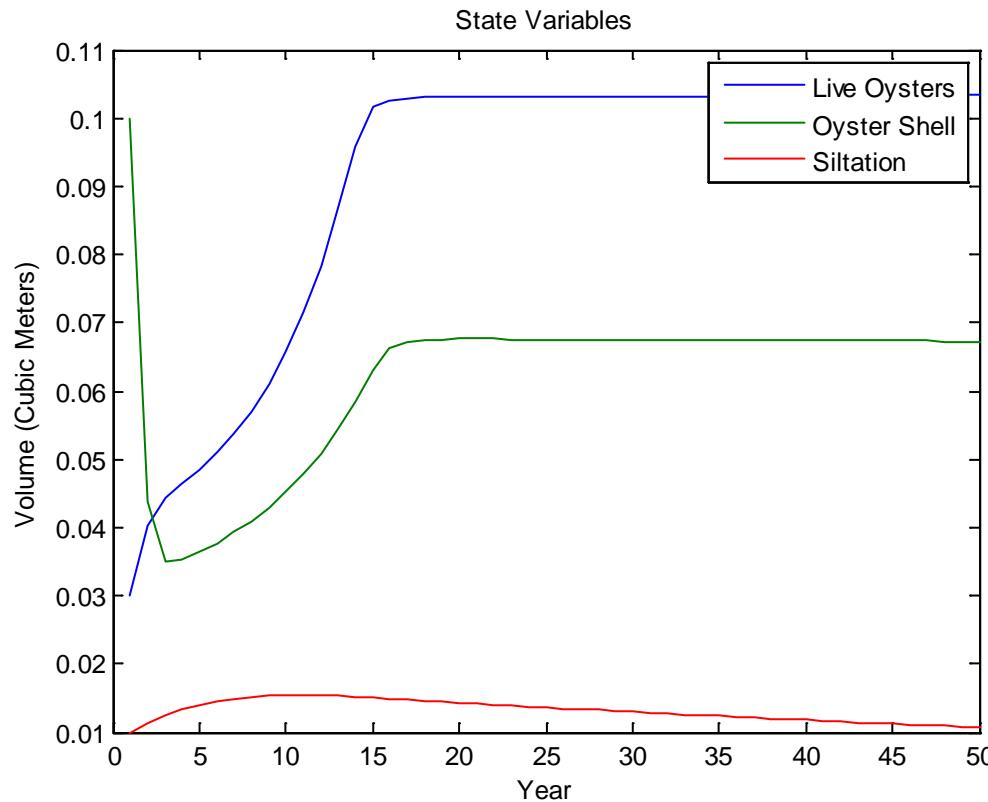
Sediment

$$\frac{dS}{dt} = -\beta S + C \exp[-\eta(O + B)] \exp \left[-\frac{F_0(O)}{y_0} \exp \left[\frac{y_0 - C \exp[-\eta(O + B)]}{y_0} \right] \right]$$

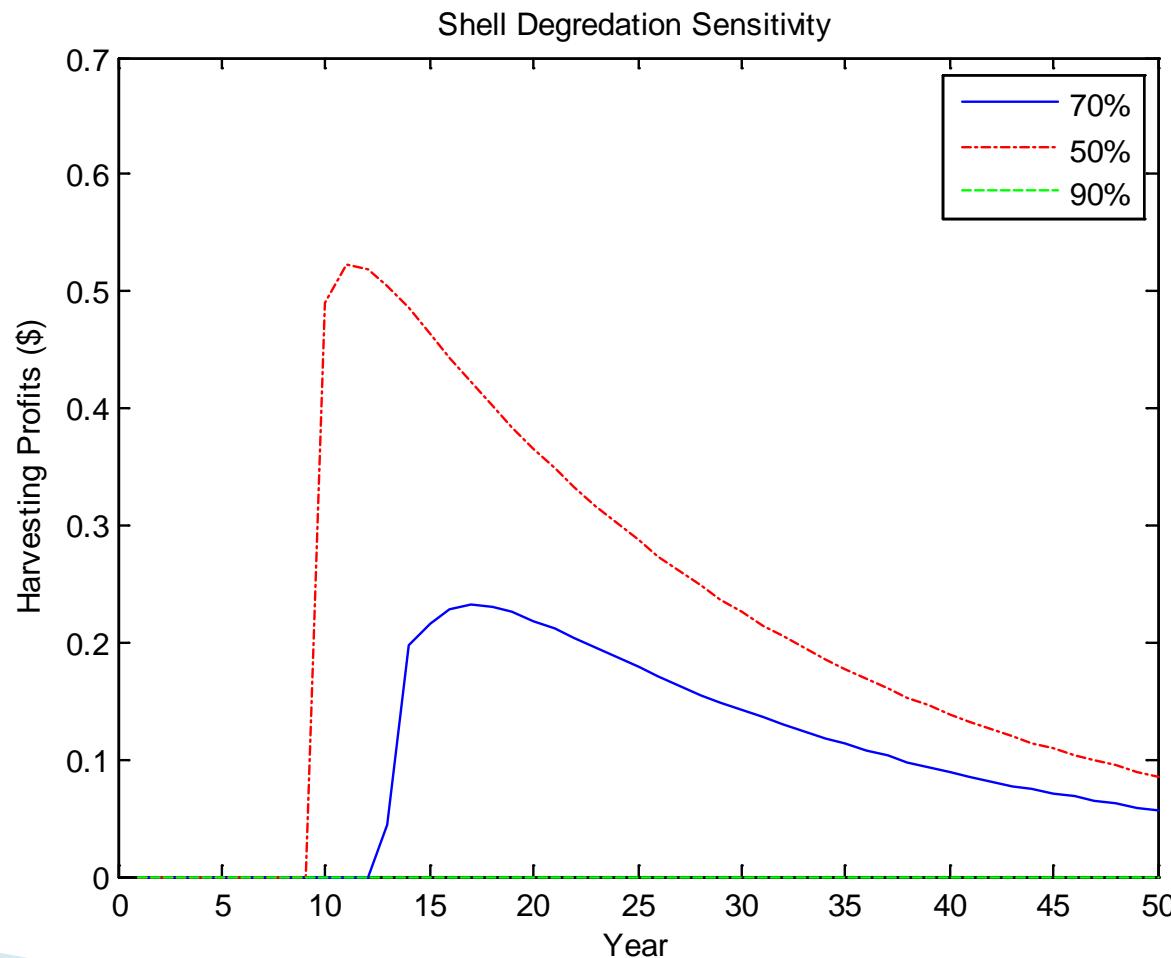
Need to Determine Model Parameters and How They Might Vary

Deterministic Dynamic programming
► CompEcon Toolbox for Matlab

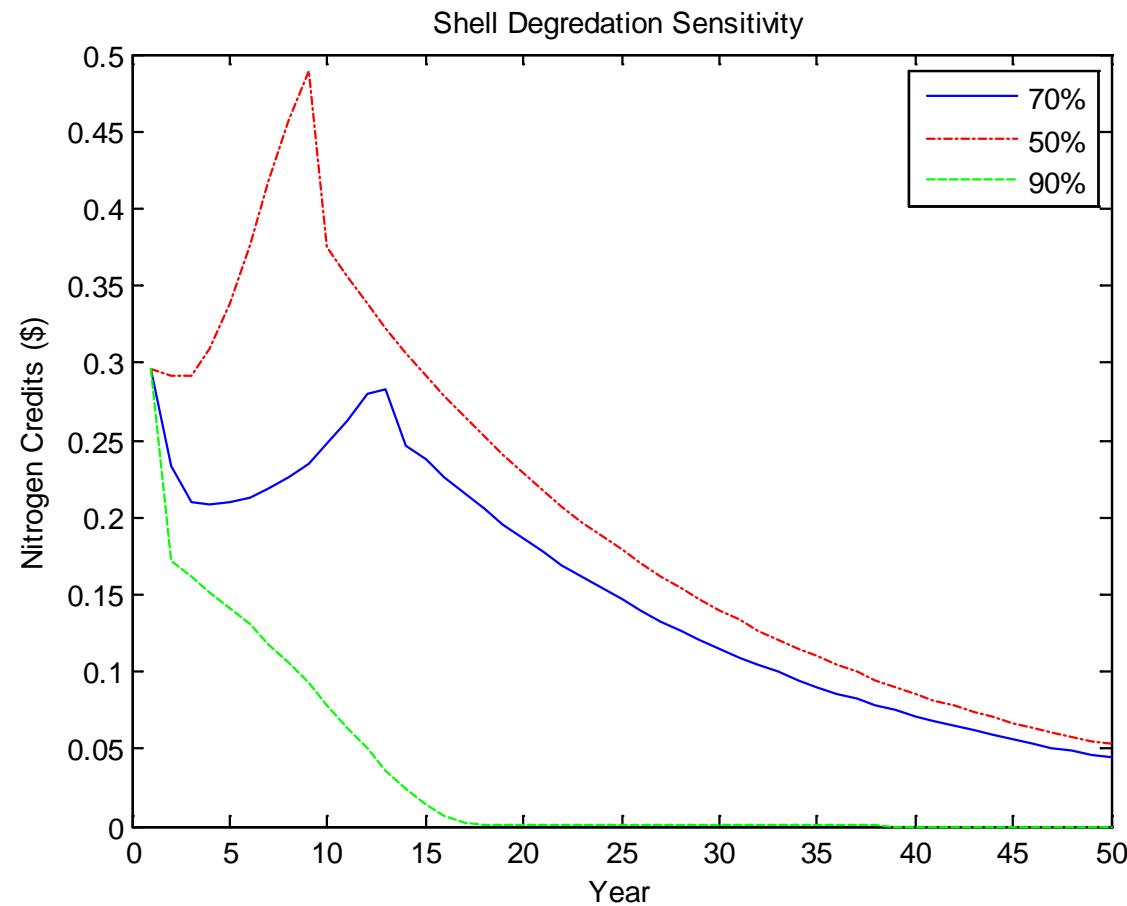
Table 3


A sample set of reasonable parameters.

Parameter	r	K	μ	ε	γ	η	y_0	F_0	β	h	C
Value	1	0.3	0.4	0.94	0.7	3.33	0.02	1	0.01	20	0.02


Jordan-Cooley et al. (2011)

Parameters	p_H	p_N	θ (Kellogg et al. 2013)	ρ	c_H
Value	\$29 (bu)	\$10 (lb)	61 (g m ⁻²)	5%	\$6.9 1


Simulate Oyster Reef Over 50 Years

It is Optimal to Sustainably Harvest The Restored Reef After 9–13 Years

Add Denitrification & Sequestration

Conclusions and Challenges

- ▶ Total private value of oyster reef (harvest + nutrient credits) can be significant % of reef creation costs
- ▶ Sustainable harvest (i.e. at very low level) is compatible (optimal) as part of ecosystem restoration
- ▶ Technical Challenges
 - Need oyster reef growth function under varying environmental conditions (salinity, depth, etc.)
 - Need denitrification/sequestration as function of reef size also under varying environmental conditions
 - Harvest damage
- ▶ Policy Challenges
 - Trading versus Offsets
 - Accepting BMP Efficiencies

Questions or Comments?