Promoting living shorelines for shoreline protection: understanding potential impacts to and ecosystem trade-offs with adjacent submersed aquatic vegetation (SAV)

Cindy Palinkas, Lorie Staver

University of Maryland Center for Environmental Science

Horn Point Laboratory

Cambridge, MD

Overview

The Problem: shoreline erosion

The Challenge: protecting shorelines with ecologically friendly and sustainable infrastructure

A Possible Solution: living shorelines

Key Knowledge Gaps for LS Implementation/Management:

1) Long-term performance (~10 years) – are they keeping up with sealevel rise?

The Approach: study design and preliminary data

Overview

The Problem: shoreline erosion

The Challenge: protecting shorelines with ecologically friendly and sustainable infrastructure

A Possible Solution: living shorelines

Key Knowledge Gaps for LS Implementation/Management:

- 1) Long-term performance (~10 years) are they keeping up with sealevel rise?
- 2) Impact to adjacent shallow-water submersed aquatic vegetation (SAV) habitats – trade-offs?

The Approach: study design and preliminary data

The Problem: Shoreline Erosion

- 1. Chesapeake Bay (CB) focus but ubiquitous problem
 - 33% of CB's shoreline is eroding; 70% of the Maryland portion
 - 85% of CB's shoreline is privately owned

The Problem: Shoreline Erosion

- Chesapeake Bay (CB) focus but ubiquitous problem
 - 33% of CB's shoreline is eroding; 70% of the Maryland portion
 - 85% of CB's shoreline is privately owned
- Past efforts focused on "hard" approaches like breakwaters and rip rap
 - ~25% of CB shoreline already hardened, up to >50% in some areas

HOW GREEN OR GRAY SHOULD YOUR SHORELINE SOLUTION BE?

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

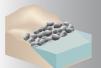
VEGETATION ONLY -

Provides a buffer to upland areas and breaks small waves. Suitable for low wave energy environments.

EDGING -

Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas

except high


wave energy

environments.

SILLS -Parallel to

vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -(vegetation optional) - Offshore structures intended and protects it to break waves. reducing the force of wave action, and encourage sediment hardened shoreline settings and sites accretion. Suitable for most areas.

Coastal Structures

REVETMENT -Lays over the slope of the shoreline from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy with existing hard shoreline structures.

The Problem: Shoreline Erosion

- 1. Chesapeake Bay (CB) focus but ubiquitous problem
 - 33% of CB's shoreline is eroding; 70% of the Maryland portion
 - 85% of CB's shoreline is privately owned
- 2. Past efforts focused on "hard" approaches like breakwaters and rip rap
 - ~25% of CB shoreline already hardened, up to >50% in some areas
- 3. Recent push for living shorelines as an alternative (including Maryland laws in 2003, Virginia General Permit, 2011), but what are the...
 - impacts to adjacent ecosystems, especially SAV (long term, short term)?
 - trade-offs in ecosystem services?

Specific Questions Addressed by this Study

How do living shorelines (LS) impact existing SAV habitat?

- Hypothesis: Depends on sediment accretion within the created marsh
 - Accretion rates ≥ sea-level rise: LS sequester land-derived sediments, decreasing supply to and subsequent burial in the subtidal
 - Accretion rates < sea-level rise: LS are not effective in trapping sediments and could even become a sediment source from wave attack and/or submergence, increasing supply to and burial in the subtidal

What are the trade-offs in ecosystem services?

- 3 groups of sites: natural shorelines, LS w/adjacent SAV, LS w/out adjacent SAV
- Hypothesis: LS installation reduces shoreline-erosion rates, with the lowest rates occurring at LS with SAV after installation
- Hypothesis: Sediment and nutrient burial rates differ in both the subtidal and intertidal among the 3 groups, with net burial highest at LS with SAV

The Approach: Site Selection, Field Work, Data Analysis!

Site selection – control for as many variables as possible (e.g. fetch, LS age, length and design)

• Obtained list of LS sites within age range (8-10 yr) from CBT, MD DNR, EC

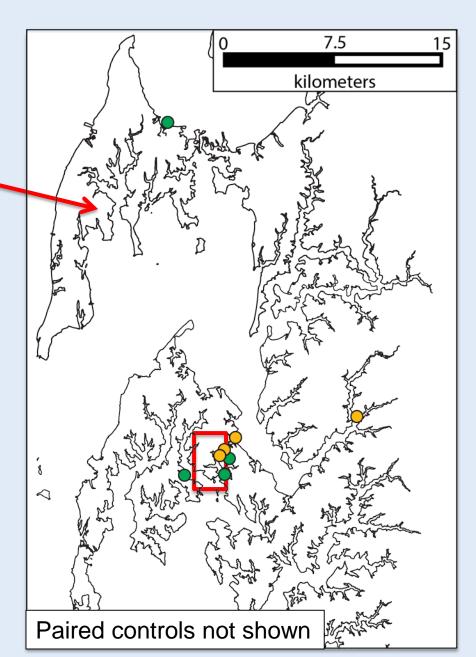
Sediment cores and plant surveys in subtidal (SAV) and intertidal (LS)

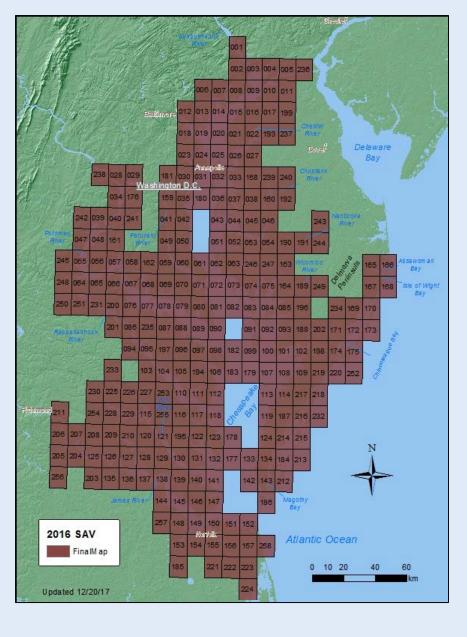
Before and after (sites and paired controls):

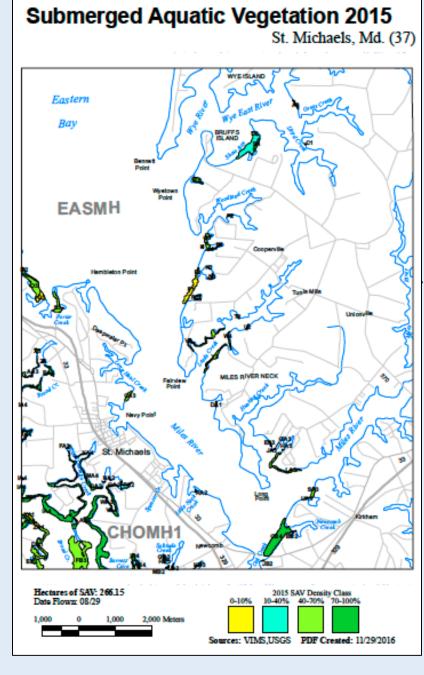
- Shoreline erosion rates
- SAV abundances (within context of larger trends)
- Sediment/nutrient character and accretion rates in subtidal

After:

- Sediment/nutrient character and accretion rates in living shorelines
- Species, stem density and height in living shorelines
- SAV presence and species in subtidal



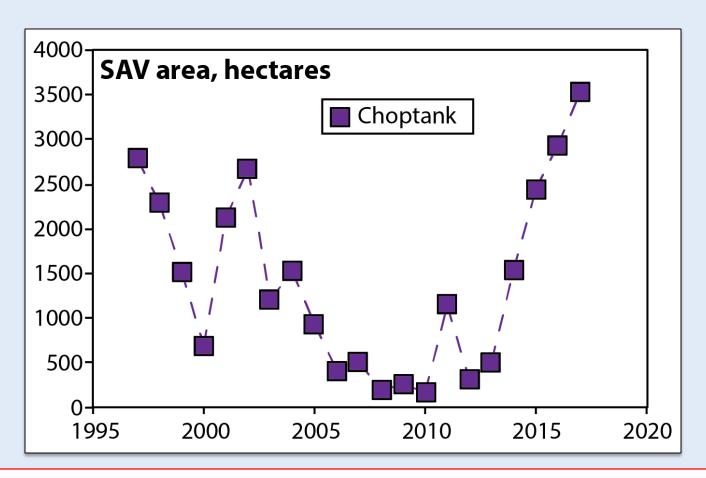

The Approach: Sites



8 sites with paired controls:

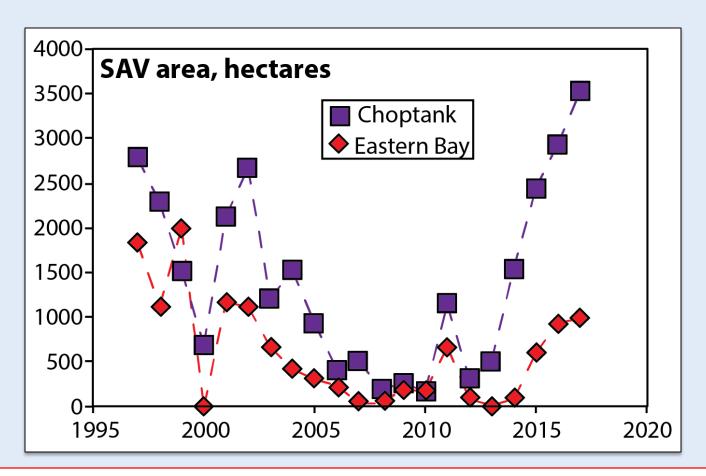
- Weighted-bed density of SAV from 1978-2005 (GIS analysis of VIMS aerial data)
- 4 sites with persistent, dense SAV (green)
- 4 sites without SAV (yellow)

Sites (continued)

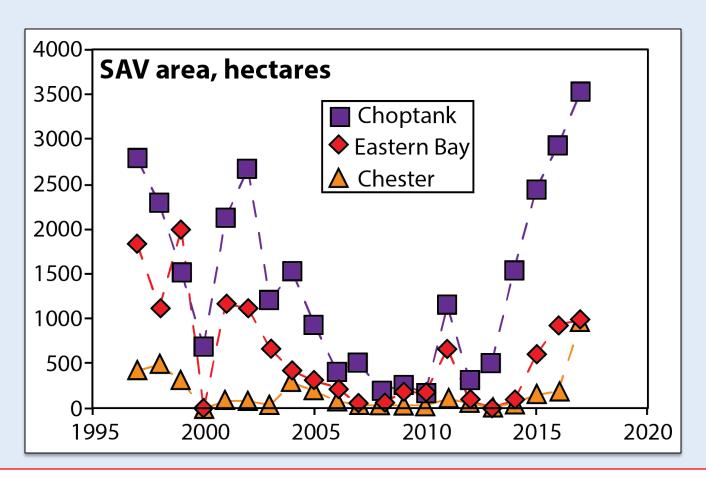

Site (#)	Install Year	SAV before?	Length, feet (meters)	Erosion rate*, ft/y (m/y)
QL (1)	2005	yes	600 (182.9)	0.90 (0.27)
OP (2)	2006	yes	440 (134.1)	0.69 (0.21)
RU (3)	2008	yes	1330 (405.4)	0.46 (0.14)
HG (4)	2007	yes	1860 (566.9)	0.10 (0.03)
SD (5)	2007	no	770 (234.7)	+0.07 (+0.02)
EC (6)	2005	no	550 (167.6)	0.07 (0.02)
MG (7)	2004	no	1500 (457.2)	0.50 (0.15)
MM (8)	2008	no	615 (187.5)	0.50 (0.15)

^{250 500 750 1000} meters SAV Bed Density Weighted Average 1978-2007

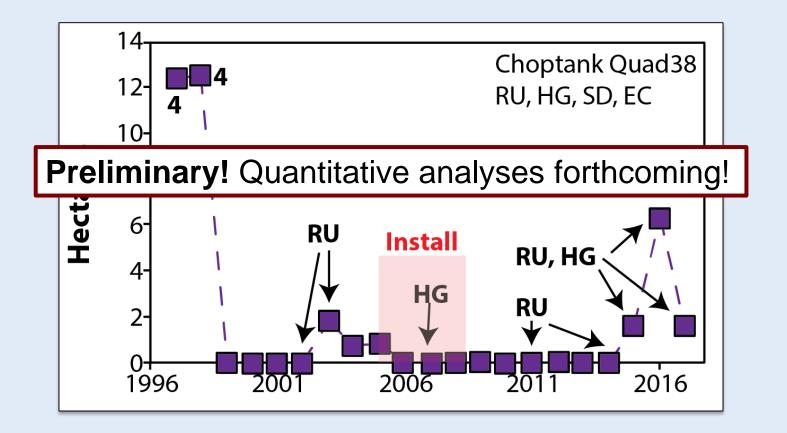
^{*}Historical rate, ~1880s-1990s (MD Coastal Atlas)



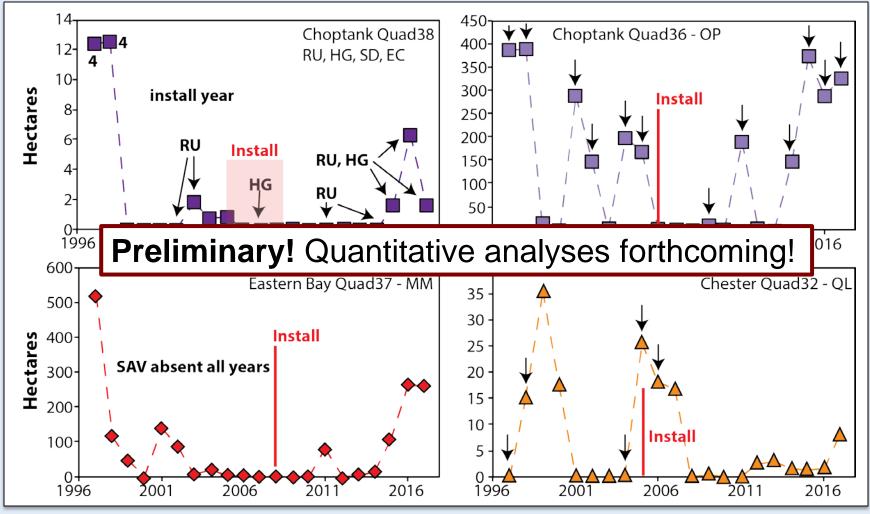
SAV data – lots of variability!


- Area high at start of window (1997), decreases to 2000, recovery to 2002
- Decline after 2002, sustained low areas from 2005-2012, except for 2011
- Resurgence from 2012 to 2017

SAV data – lots of variability!


- Area high at start of window (1997), decreases to 2000, recovery to 2002
- Decline after 2002, sustained low areas from 2005-2012, except for 2011
- Resurgence from 2012 to 2017

SAV data – lots of variability!

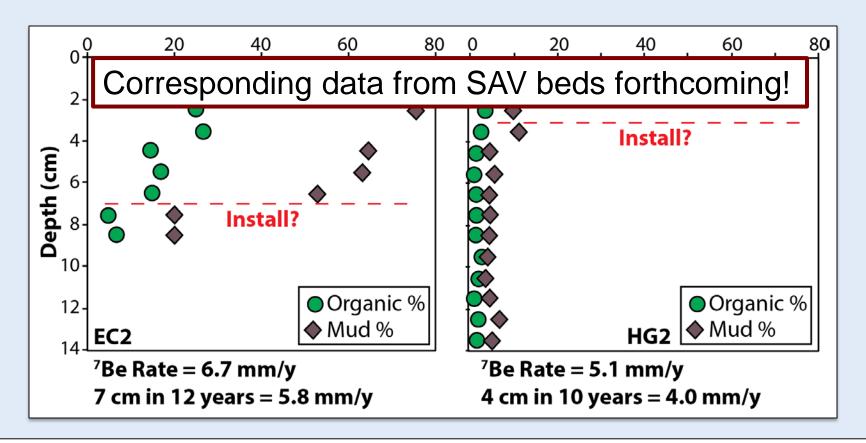

- Area high at start of window (1997), decreases to 2000, recovery to 2002
- Decline after 2002, sustained low areas from 2005-2012, except for 2011
- Resurgence from 2012 to 2017

SAV Data

- Install window in red (2005-2008); letters indicate SAV present at site
- All 4 had SAV 1997-1998; SAV mostly absent afterwards; resurgence in 2014-2017 at RU and HG

SAV Data

Note: Arrows indicate presence at LS site, quad for MG not shown; no SAV at site or in quad 1997-2017


SAV Presence: LS vs. Control Sites (Year 1 of study)

(percent vegetated sampling locations per transect)

Site	Living Shoreline mean (± se, n = 3)	Control mean (± se, n = 3)
SAV before installation:		
QL	0	0
ОР	89.7 (5.2)	73.8 (5.1)
RU	85.7 (0)	47.6 (12.6)
HG	52.4 (12.6)	76.2 (9.6)
No SAV before installation:		
SD	55.6 (11.1)	27.8 (14.7)
EC	35.6 (2.2)	33.3 (0)
MG	0	0
MM	6.7 (6.7)	0

LS and paired Control sites showed similar SAV presence

Sediment data – living shoreline examples

- Change in sediment character (mud and organic content): sand layer during installation (below line) overlain by marsh accretion (above line)
- Preliminary accretion rates calculated via ⁷Be (half-life 53.3 days):
 appear to ~rate of sea-level rise; agree with estimate from install horizon

Summary

Project in early stages – field surveys complete, lots of data to come!

Preliminary insights:

- SAV appear to follow trends in larger area, with no obvious long term impact of living shoreline installation
- Increase in mud and organic content of living shoreline sediments after install; accretion rates ~ sea-level rise

Stay tuned!

Acknowledgements:

cpalinkas@umces.edu

<u>Istaver@umces.edu</u>

MD Department of Natural Resources Maryland Department of Environment Environmental Concern, Inc.

