LOWEST LOADING LAND USE

Modeling Workgroup

February 14, 2017

Olivia Devereux

ISSUE: MODEL LOADS BELOW THAT OF FOREST

• Is it realistic for the loads from other land uses to be lower than from forest? Should reductions be limited?

At the August 2016 Modeling Workgroup, this issue was presented.

- More information was requested about the frequency and cause.
 - 1. Land to water factors reflect the location of land uses within a catchment. Natural land uses can be closer to streams than other land uses.
 - 2. BMPs reduce loads below forest.
 - 3. Wide range of loads across watershed, resulting in some land segment loads much below the watershed-wide average.

WATERSHED MODEL LOADS < FOREST

• Load with land to water factors and no BMPs

				% Land	
Scenario	Version	Nutrient	Land Use	Segments	Avg lb/a < forest
Calibration	Beta 4	TN	Mixed Open	20.16%	0.566
E3	Beta 3	TN	Ag Open Space	0.16%	0.838
WIP2	Beta 3	TN	Ag Open Space	0.16%	0.773
Calibration	Beta 4	TP	Harvested Forest	0.10%	0.006
Calibration	Beta 4	TP	Mixed Open	2.55%	0.007
WIP2	Beta 3	TP	Ag Open Space	1.71%	0.003
WIP2	Beta 3	TP	Grains with Manure	0.21%	0.009
WIP2	Beta 3	TP	Legume Hay	1.92%	0.004
WIP2	Beta 3	TP	Other Hay	0.68%	0.006
E3	Beta 3	TP	Ag Open Space	1.66%	0.003
E3	Beta 3	TP	Grains with Manure	0.21%	0.009
E3	Beta 3	TP	Legume Hay	1.82%	0.004
_{2/14/} E3	Beta 3	TP	Other Hay	0.62%	0.006

WHY THIS IS OCCURRING

- Land to Water Factors
 - Delivered non-forest loads are less than delivered forest loads based on distance to the water for acres in each sector and catchment.
 - Example: a catchment with croplands on the higher elevations and forest in the bottom lands.

WATERSHED MODEL LOADS < FOREST

 Edge of Stream – Includes land to water factors and <u>BMPs</u>

Scenario	Varsion	Nutriont	Costor	% Land	Ava lh/a < farast
Scenario	version	nutrient	Sector	Segments	Avg lb/a < forest
E3	Beta 3	TN	Agriculture	0.022%	0.64
E3	Beta 3	TN	Developed	0.034%	0.813
WIP2	Beta 3	TN	Agriculture	0.015%	0.697
WIP3	Beta 3	TN	Developed	0.003%	0.774
E3	Beta 3	TP	Agriculture	1.659%	0.016
WIP2	Beta 3	TP	Agriculture	1.113%	0.008

WHY THIS IS OCCURRING

• BMPs

- Example: Infiltration BMP reduces 85% of TN
 - 7.81 Lbs. TN (from turfgrass land use acre in FIPS 54063) * (1-0.85) = 1.171 Lbs. TN
 - Forest loads at 1.48 Lbs. TN
- Multiple BMPs compound the problem
 - Example: Bioretention reduces 80 % N and Urban Nutrient Management reduces 9% N
 - 7.81 Lbs. TN (from turfgrass land use acre in FIPS 54063) * (1-0.8) * (1-0.09) = 1.42
 Lbs. TN
 - Forest loads at 1.48 Lbs. TN

CALIBRATION AVERAGE LOADS < FOREST

- Calibration Average Loads
 - TP for 11 land segments, 9 are mixed open
 - Mixed open has 3 slightly negative, which is persistent among Beta versions.
 - Others are slightly < forest
 - 0.02 lbs per acre < forest, on average

CALIBRATION AVERAGE LOADS < FOREST

• Example for Mixed Open TP in N10001:

Forest Runoff input =	1.331
---	-------

- Forest Sediment loss input = 0.004
- Mixed Open Runoff Input = 1.577
- Mixed Open Sediment input= 0.247
- Forest Runoff Input Average = 6.717
- Forest Sediment Input Average = 0.071
- Mixed Open Runoff Input Average = 6.734
- Mixed Open Sediment Input Average = 2.725
- Forest Runoff Sensitivity = 0.007
- Forest Sediment Sensitivity = 0.011
- Mixed Open Runoff Sensitivity = 0.040
- Mixed Open Sediment Sensitivity = 0.063
- Forest Watershed Average Load = 0.060
- Mixed Open Watershed Average Load = 0.339

CALIBRATION AVERAGE LOADS < FOREST

- Forest Ave Load + $\sum (\Delta \text{ Inputs * Sensitivity})$ = 0.060+((1.331-6.717)*0.007)+((0.004-0.071) *0.011)
 - = 0.0212
- Mixed Open Ave Load + \sum (Δ Inputs * Sensitivity) = 0.339+((1.577-6.734)*0.040)+((0.247-2.725) *0.063)
 - = -0.0224
- Runoff and sediment inputs are substantially lower than the input average. This difference is not compensated for by a higher positive Watershed Average Load, as it would be in higher loading land

Average Load + \(\Delta \) Inputs *
Sensitivity

**
Land Use Acres

Land to Water

BMP

Stream Delivery

River Delivery

OPTIONS FOR ADJUSTING THE CALIBRATION AVERAGE LOADS

- For each land segment and land use where load < forest,
 - Set to forest?
 - Set to 0.5 * forest?
 - For total nitrogen and total phosphorus, or by nutrient species?

 Adjustment is applied only for the calibration average loads, or calibration targets. It would not be applied to the time-variable model or CAST.

DETAILED INFORMATION

https://public.tableau.com/views/LowestLoadingLandUse/WatershedAverageLoadRate?:embed=y&:display_count=yes

CONSIDERATIONS AND OPTIONS IF THIS NEEDS TO BE ADDRESSED

BMPs

- Could set the forest loading rate as the lowest loading land use
- At scale of Irseg and at edge-of-stream. Some BMPs are applied at EOR and EOT, so could still have some loads lower.
- Calculated for TN or TP; maintain same proportion among nutrient species
- No BMPs are applied to forest; some BMPs applied to wetlands. This would eliminate benefit of wetland BMPs.
 - Consider creating a wetland exception
 - Consider using the post-BMP wetland as the lowest loading land use by running a wetland scenario with all BMPs. This works where the same atmospheric deposition is used (most of the time). No other inputs on wetlands.

Cuts off BMP credit