Hybrid Approach to Oyster Reef Monitoring

July 21, 2022

FishGIT Summer Meeting

Allison Tracy, PhD
Caitlyn Dittmeier
Matthew Ogburn, PhD

Outline: Towards an applied framework

- Goals of the Hybrid Approach
- Supporting data from field survey

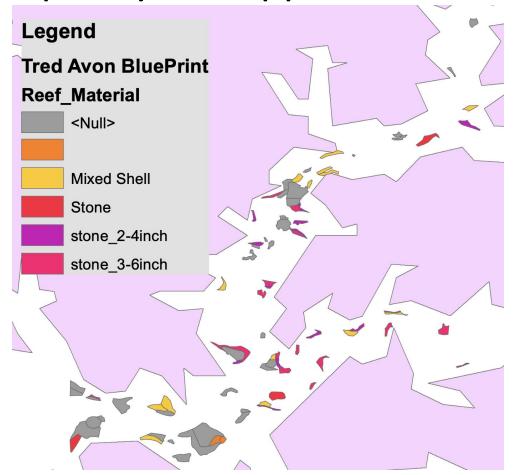
- Draft materials
- Trade-offs: Quantitative and Qualitative
- **Use scenarios**: (1) Post-restoration monitoring and (2) Pre-restoration ground-truthing

The Hybrid Approach: Integrating 3 Tools

- 1. Patent tong
- 2. Diving

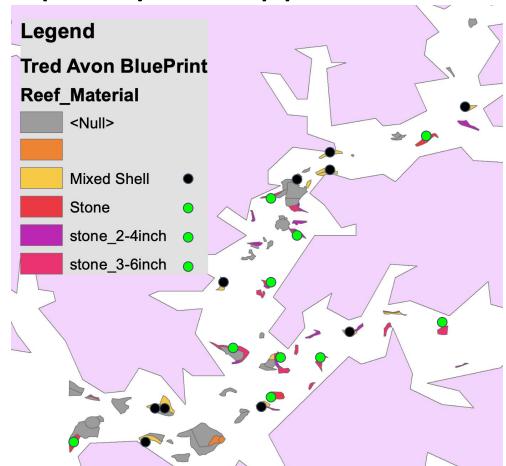
Existing metrics = oyster and reef measurements currently used in Chesapeake Bay monitoring (e.g. live oyster density)

3. RAP = "Rapid Assessment Protocol"


Qualitative scores collected via GoPro cameras

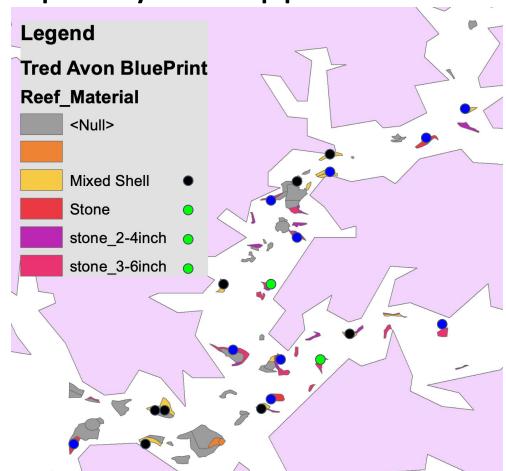
Hybrid approach

Combination of existing metrics & RAP


Example Hybrid Approach Scenario

Example Hybrid Approach Scenario

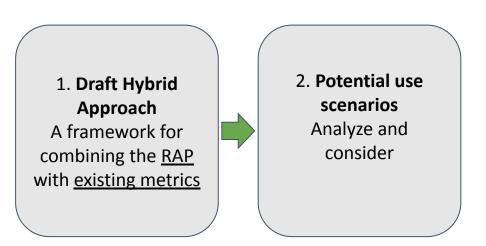
- 10 diving points
- 10 patent tong points


= 800 minutes

Example Hybrid Approach Scenario

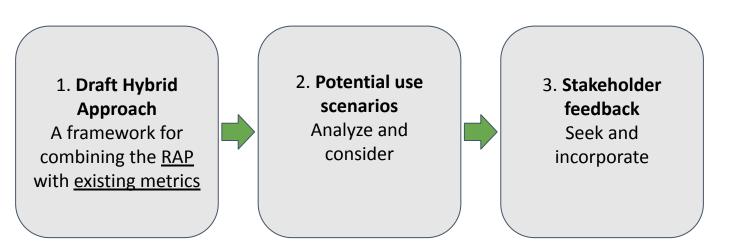
- 2 diving points
- 8 patent tong points
- 10 RAP points

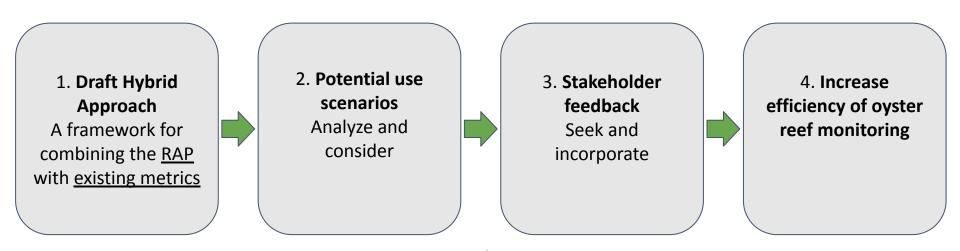
= 430 minutes



1. Draft Hybrid Approach

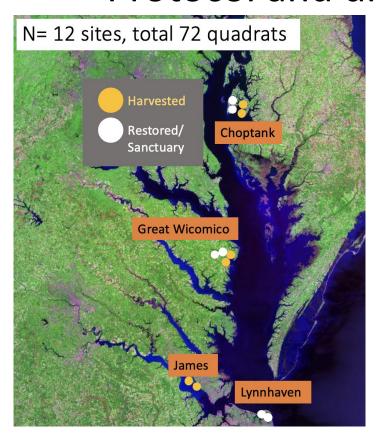
A framework for combining the <u>RAP</u> with <u>existing metrics</u>


Steps to Implementation


Steps to Implementation

Steps to Implementation

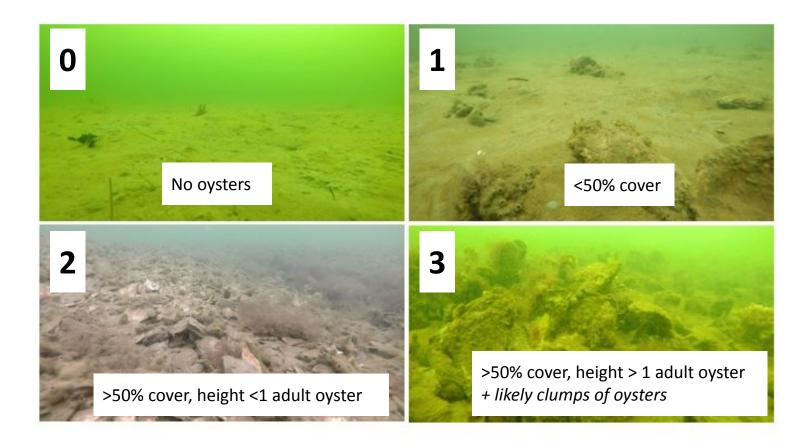
Steps to Implementation


Outline: Towards an applied framework

- Goals of the Hybrid Approach
- Supporting data from field survey

- Draft materials
- Trade-offs: Quantitative and Qualitative
- Use scenarios: (1) Post-restoration monitoring and
 (2) Pre-restoration ground-truthing

Field study using the Rapid Assessment Protocol and diver-collected metrics



Data on same quadrat

Habitat Photo Analysis: Scores from 0 to 3

Summary of Field Study Results:

A direct comparison between RAP & existing metrics

The highest score (3)
 from the RAP captured
 habitat quality across
 multiple metrics

Metric	Successful Rapid
	Assessment Protocol
Oyster biomass	
Oyster density	
Multiple size classes	
Reef height	
Rugosity	
Efficiency	

Summary of Field Study Results:

A direct comparison between RAP & existing metrics

- The highest score (3)
 from the RAP captured
 habitat quality across
 multiple metrics
- The highest score from the RAP consistently met metrics (including thresholds & targets), but other scores do not

Metric	Successful Rapid	
	Assessment Protocol	
Oyster biomass		
Oyster density		
Multiple size classes		
Reef height		
Rugosity		
Efficiency		

Outline: Towards an applied framework

- Goals of the Hybrid Approach
- Supporting data from field survey

- Draft materials
- Trade-offs: Quantitative and Qualitative
- Use scenarios: (1) Post-restoration monitoring and
 (2) Pre-restoration ground-truthing

Draft Hybrid Approach Materials

1. Conversion table for **Post-restoration monitoring**

2. Conversion table for **Pre-restoration ground-truthing**

3. User Guide: a Word document with further detail on the tables

Conversion Tables: What are they intended for?

YES	NO
To act as guidance for whether and how to incorporate <u>RAP</u> into monitoring scenarios	To replace <u>existing metrics</u> To gather precise data on densities, biomass, etc.

Conversion Table: Post-restoration monitoring

Metric	RAP Score 0 (no oysters present)	RAP Score 1 (<50% cover) RAP Score 2 (>50% cover, height < 1 oyster)	RAP Score 3 (>50% cover, height > 1 oyster, clumping)
Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2	X Does not meet metric	O May meet metric	Meets metric
Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2	X	O	✓
Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40)	X	O	✓
GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps	X	X	✓
Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m	X	O	✓
Inferred Shell Budget Based on biomass & density (above)	X	0	✓

Conversion Table: Pre-restoration ground-truthing

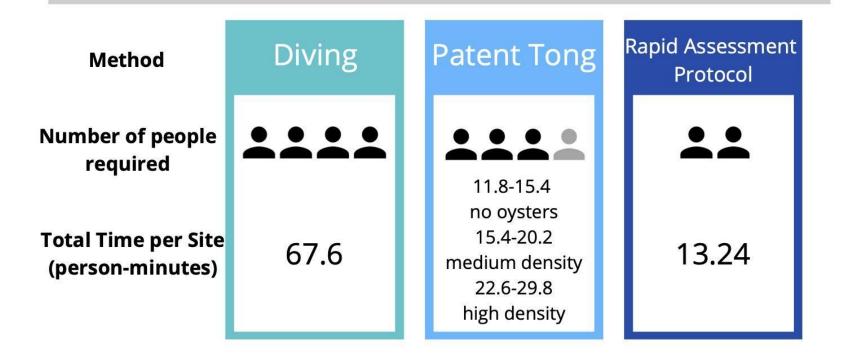
Metric	RAP Score 0 (no oysters)	RAP Score 1 (<50% cover)	RAP Score 2 (>50% cover, height < 1 oyster)	RAP Score 3 (>50% cover, height > 1 oyster, clumping)
Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2	X	X Does not meet metric	May meet metric	Threshold Target
Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2	X	X	Threshold Target	✓
Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40)	X	O	O	✓
GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps	X	X	X	✓
Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m	X	X	O	✓
Inferred Shell Budget Based on biomass & density (above)	X	X	0	✓

User Guide: Hybrid Approach

Allison M. Tracy and Matthew B. Ogburn Smithsonian Environmental Research Center

Table of Contents

Comments applicable to all reefs	1
Restored sites	2
Unrestored/ harvested sites	3


Outline: Towards an applied framework

- Goals of the Hybrid Approach
- Supporting data from field survey

- Draft materials
- Trade-offs: Quantitative and Qualitative
- Use scenarios: (1) Post-restoration monitoring and
 (2) Pre-restoration ground-truthing

Efficiency Comparison

Efficiency depends on the monitoring tool and oyster density.

(1) Diving (existing tool)	Collect oysters for physical counts	 Differentiates between reef quality at low and medium densities Provides data on spat 	Warm water monthsBetter in high visibility

Strengths

Seasonality

Tool

Method

(1) Diving (existing tool)	Collect oysters for physical counts	Differentiates between reef quality at low and medium densitiesProvides data on spat	Warm water monthsBetter in high visibility
(2) Patent tong (existing tool)	Collect oysters for physical counts	See diving strengthsFast at low densities	 Waterman availability varies and requires switching out crabbing gear for tongs

Strengths

Seasonality

Tool

Method

Tool	Method	Strengths	Seasonality
(1) Diving (existing tool)	Collect oysters for physical counts	 Differentiates between reef quality at low and medium densities Provides data on spat 	•Warm water months •Better in high visibility
(2) Patent tong (existing tool)	Collect oysters for physical counts	See diving strengthsFast at low densities	 Waterman availability varies and requires switching out crabbing gear for tongs
(3) Rapid Assessment Protocol (RAP)	Collect and score GoPro camera images	 More efficient, cost-effective - allows for more sampling pts Direct info on habitat Low tech allows diverse users Non-destructive Creates a record of reef appearance 	 Best visibility in November to April, low in July/ August Year-round visibility in southern bay May be low visibility ~2 days after heavy wind and/or rain

Outline: Towards an applied framework

- Goals of the Hybrid Approach
- Supporting data from field survey

- Draft materials
- Trade-offs: Quantitative and Qualitative
- Use scenarios: (1) Post-restoration monitoring and
 (2) Pre-restoration ground-truthing

Hypothetical scenarios

Based on efficiency comparison

Use Scenarios

1. Determine study objectives

2. Consult "Conversion Table"

3. Consider efficiency (quantitative) and qualitative trade-offs

4. Decide on Hybrid Approach, existing metrics, or RAP only to monitor reefs

1. Post-restoration monitoring

2. Pre-restoration ground-truthing

Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?

Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?

Consult conversion table for RESTORED sites with this goal in mind.

Conversion Table: Post-restoration monitoring

Metric	RAP Score 0 (no oysters present)			(>50% cover, height > 1 eer, clumping)
Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2	X Does not meet metric	May meet metric	Me	eets metric
Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2	X		Scores of 3 consistently	✓
Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40)	X	O	meet metrics in restored	✓
GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps	X	X	areas	√
Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m	X	O		✓
Inferred Shell Budget Based on biomass & density (above)	X	O		✓

Applying the conversion table

Scores of 0: This will reliably denote metrics ARE NOT met.

Scores of 1 or 2: More data is needed to determine if thresholds are met, so existing metrics are needed.

Scores of 3: This will reliably denote the metrics ARE met.

Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?

Consult conversion table for post-restoration sites with this goal in mind.

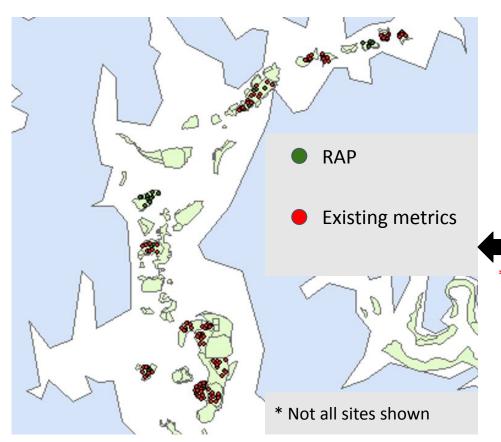
What proportion of the sites are 3s?

88 of the 307 sites are very high density (>80 / m2) and would likely score a 3.

Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?

Consult conversion table for post-restoration sites with this goal in mind.

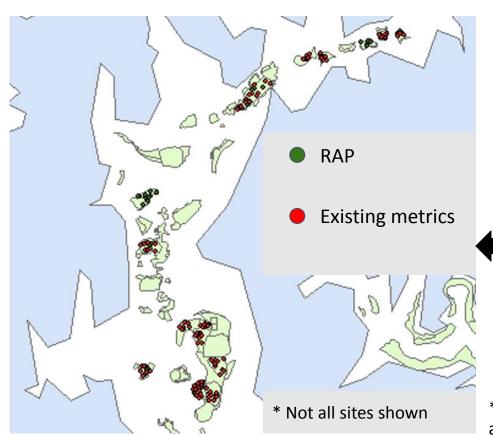


Estimate efficiency & consider trade-offs

What proportion of the sites are 3s?

88 of the 307 sites are very high density (>80 / m2) and would likely score a 3.

Harris Creek Hybrid Approach



Efficiency Comparison

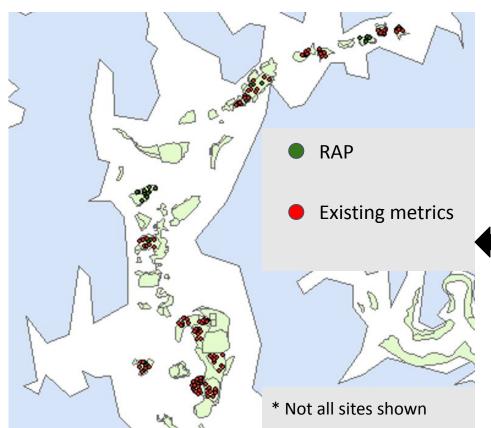
- Existing metrics (242 patent tong sites + 65 diving sites): 130 hours
- Hybrid approach (219 patent tong sites + 88 RAP sites): 72 hours

^{*} Applying RAP at 88 high density sites that are likely to score 3

Harris Creek Hybrid Approach

Efficiency Comparison

- Existing metrics (242 patent tong sites + 65 diving sites): 130 hours
- 2. Hybrid approach (219 patent tong sites + 88 RAP sites): 72 hours


* Applying RAP at 88 high density sites that are likely to score 3

Efficiency Comparison

Method	Diving	Patent Tong	Rapid Assessment Protocol
Number of people required	****	11.8-15.4	**
Total Time per Site (person-minutes)	67.6	no oysters 15.4-20.2 medium density 22.6-29.8 high density	13.24

* Time based on efficiency table person-minutes/ site and a 3-person patent tong crew at medium oyster densities

Harris Creek Hybrid Approach

Efficiency Comparison

- 1. Existing metrics (242 patent tong sites + 65 diving sites): 130 hours
- 2. Hybrid approach (219 patent tong sites + 88 RAP sites): 72 hours

It's ~ 44% faster to use the hybrid approach instead of the existing monitoring methods alone

Use Scenario #1: Post-restoration monitoring ex) Harris Creek Sampling > 6 years

Survey <u>307</u> sites post-restoration for monitoring: Are they meeting the metrics?

Consult conversion table for post-restoration sites with this goal in mind.

Estimate efficiency & consider trade-offs

Decide to use the Hybrid Approach

Use Scenarios

1. Determine study objectives

2. Consult "Conversion Table"

3. Consider efficiency (quantitative) and trade-offs

4. Decide on Hybrid Approach, existing metrics, or RAP only to monitor reefs

- Post-restoration monitoring
- 2. Pre-restoration ground-truthing

Goal = determine sites in a tributary suitable for restoration re: oyster density

Goal = determine sites in a tributary suitable for restoration re: oyster density

Consult conversion table for pre-restoration sites with this goal in mind

Conversion Table: Pre-restoration ground-truthing

Metric	RAP Score (no oysters)		P Score 1 0% cover)	RAP Score 2 (>50% cover, height < 1 oyster)	RAP Score 3 (>50% cover, height > 1 oyster, clumping)
Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2	X	Does n	X not meet metric	May meet metric	Threshold Target
Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2		We don't have data	X	Threshold Target	✓
Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40)	X	on 0s in unrestored reefs	0	O	✓
GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps	X		X	X	✓
Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m	X		Χ	O	✓
Inferred Shell Budget Based on biomass & density (above)	X		X	0	✓

Conversion Table: Pre-restoration ground-truthing

Metric	(no oyste		P Score 1 0% cover)	RAP Score 2 (>50% cover, height < 1 oyster)	RAP Score 3 (>50% cover, height > 1 oyster, clumping)
Biomass Threshold = 15 g dry weight/ m2 Target = 50 g dry weight/ m2	X	Does r	X not meet metric	May meet metric	Threshold Target
Density Threshold = 15 oysters/ m2 Target = 50 oysters/ m2	X	We don't have data	X	Threshold Target	✓
Multiple Year Classes (Y/N) Presence of oysters in at least 2 size classes: market (>76 mm); small (40-75); spat (<40)	X	on 0s in unrestored reefs	О	0	✓
GoPro-based Reef Height Height of 1 adult oyster (relative to oysters in image) with oysters likely in clumps	X	But the RAP alone will indicate if oysters are present above the sediment	X	X	✓
Rugosity (Y/N) Ratio of horizontal distance covered by 1m chain relative to 1m	X		X	O	✓
Inferred Shell Budget Based on biomass & density (above)	X		X	O	√

Goal = determine sites in a tributary suitable for restoration re: oyster density

Consult conversion table for pre-restoration sites with this goal in mind

Use ONLY RAP if goal is to find oysters above the sediment

Use existing metrics if goal is to compare to a maximum oyster density

Goal = determine sites in a tributary suitable for restoration re: oyster density

Consult conversion table for pre-restoration sites with this goal in mind

Estimate efficiency & consider trade-offs

Estimate could play into decision ex) many 0s expected

Goal = determine sites in a tributary suitable for restoration re: oyster density

Consult conversion table for pre-restoration sites with this goal in mind

Estimate efficiency & consider trade-offs

RAP if the key information is no oysters above the sediment

Existing metrics if the key information is a max density

In this case, the Hybrid Approach offers a choice

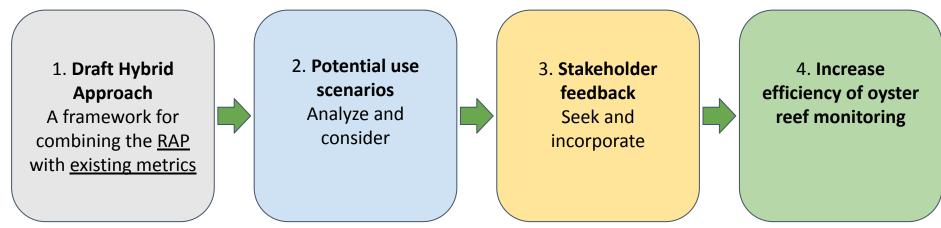
Integrating Multiple Considerations

How do trade-offs differ based on the organization conducting monitoring?

Which sites are important enough to warrant collection of data with more than 1 of the 3 tools? (E.g. high density sites, mortality events)

When are habitat data vs. existing metrics (e.g. densities) most helpful?

Summary of Use Scenarios for Hybrid Approach


Restoration Monitoring	Harvest Monitoring
#1: Monitoring a restored tributary (at 3, 6, or >6 years)	#1: Monitoring harvested areas to answer questions outside of the Fall Survey
#2: Ground-truthing prior to restoration	#2: Add new sites to the Fall Survey
#3: Data on questions we don't have bandwidth for with existing metrics alone	#3: Determine where to conduct stock enhancement (planting)
???	???

Implementation Questions

 What are the considerations at play for quantitative and qualitative trade-offs?

- How can this apply to different restoration settings/ substrates?
- Are there scenarios we do not currently monitor at all because of the cost-benefit calculation that could be revisited with the Hybrid Approach?
- What additional information should we include for broader stakeholder engagement?

Steps to Implementation

Conversion Tables
User Guide

Restoration Harvest 1-pager/ flyer
Stakeholder feedback
Webinar
(September*)

Acknowledgments

Co-authors: Matt Ogburn & Caitlyn Dittmeier

RAP Workgroup

Allison Colden (CBF)

Doug Myers (CBF)
Rom Lipcius (VIMS)

Lisa Kellogg (VIMS)

Rochelle Seitz (VIMS)

Russ Burke (CNU)

Sara Coleman (ORP)

Olivia Coretti (ORP)

Jay Lazar (NOAA)

David Bruce (NOAA)

Jason Spires (NOAA)

Stephanie Westby (NOAA)

SERC Fisheries Conservation Lab

Rob Aguilar
Carmen Ritter

Jack Olson

Keira Heggie

Kim Ritchie

Henry Legett

Gabriel Ng

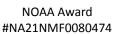
Sarah Mallette

Ward Slacum (ORP)

Andrew Button (VMRC)

Melissa Southworth (VMRC)

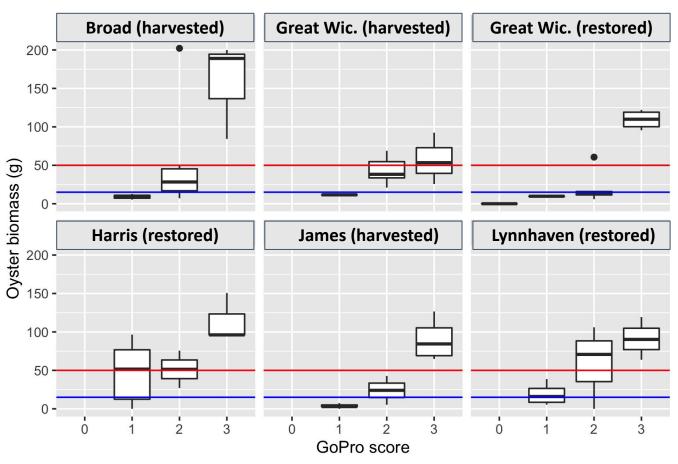
David Schulte (USACE)


NOAA Chesapeake Bay Office

MD Oyster Workgroup

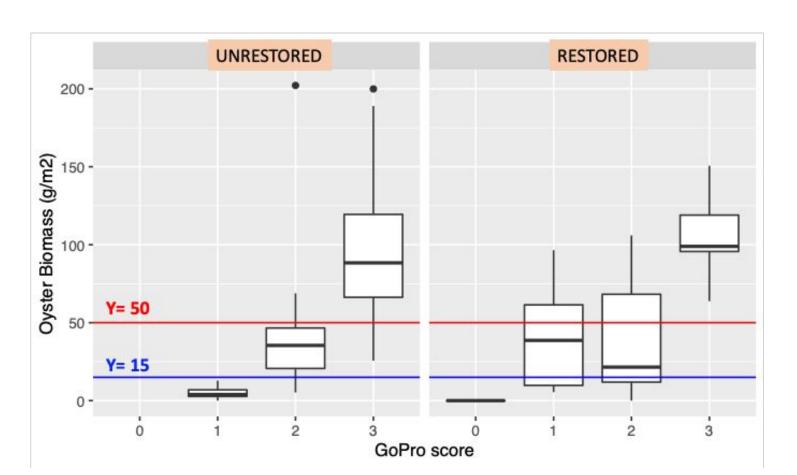
VA Oyster Workgroup

MDNR

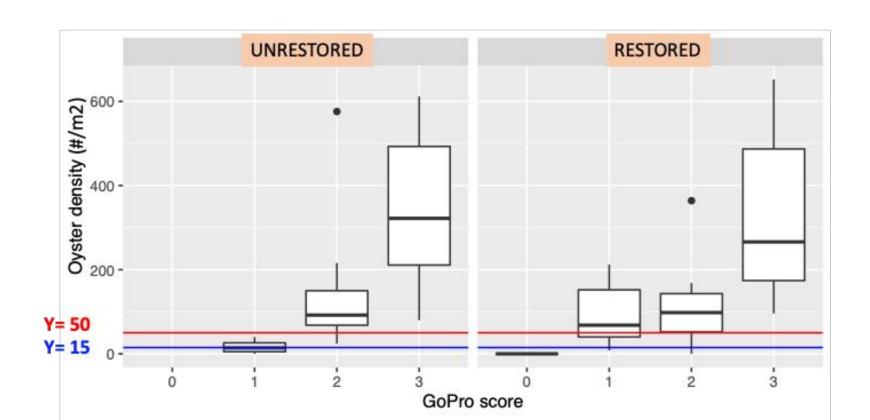


Extra slides

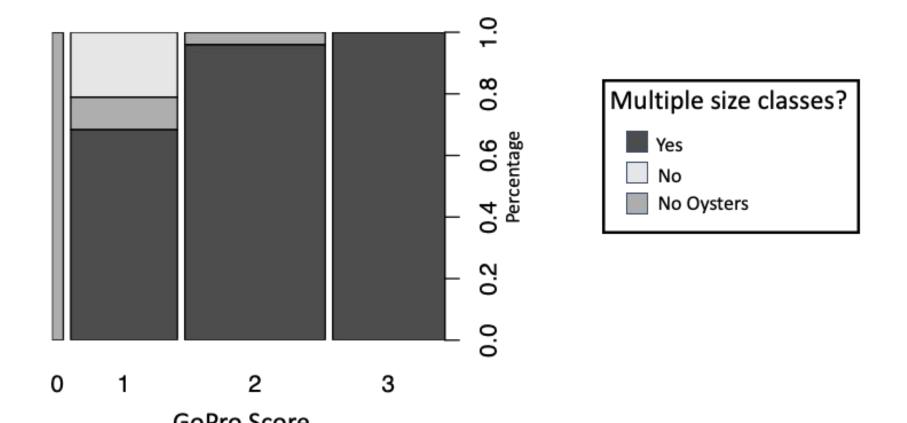
Tributary Patterns: 3s Consistently High

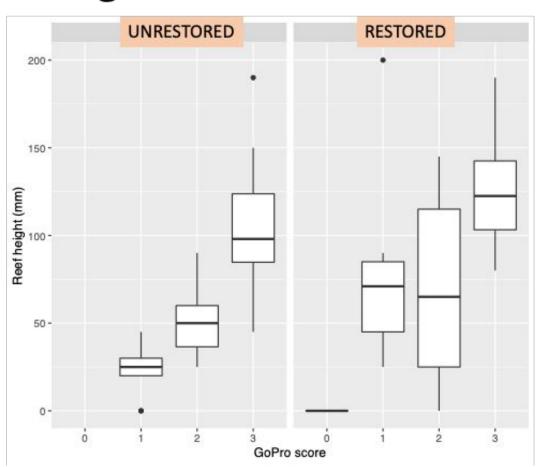


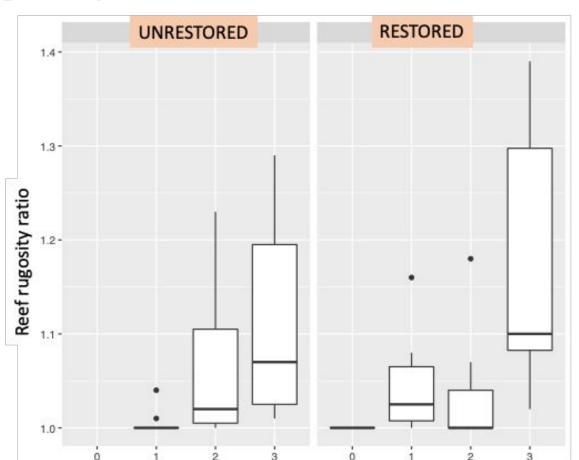
Efficiency comparison


	Non-field Time (person-minutes/ site)	Field Time (person-minutes/ site)	# of People (accounted for in times)	TOTAL Time (person-minutes/ site)
Patent Tong (3 people)	1 (estimated)	10.8 (no oysters) 14.4 (medium density) 21.6 (high density)	3	11.8 (no oysters) 15.4 (medium density) 22.6 (high density)
Patent Tong (4 people)	1 (estimated)	14.4 (no oysters) 19.2 (medium density) 28.8 (high density)	4	15.4 (no oysters) 20.2 (medium density) 29.8 (high density)
Diver	1 (estimated)	66.6	4	67.6
GoPro RAP	3.6	9.6	2	13.24

N.B. Additional costs beyond time include changing boats with crew size or diving insurance


Oyster Biomass: restored vs. unrestored


Oyster Density: restored vs. unrestored


Multiple size classes vs. GoPro Scores

Reef Height: restored vs. unrestored

Rugosity: restored vs. unrestored

