MANURE INJECTION/INCORPORATION EXPERT PANEL REPORT

AGRICULTURE WORKGROUP UPDATE

OCTOBER 20, 2016

PANEL MEMBERS

Name	Affiliation	Role
	USDA-Agriculture Research	
Curt Dell	Service	Panel Chair
	University of Maryland –	
Art Allen	Eastern Shore	Panel Member
	USDA-Natural Resources	
Dan Dostie	Conservation Service	Panel Member
Robb Meinen	Penn State University	Panel Member
Rory Maguire	Virginia Tech	Panel Member
Chris Brosch	Delaware Department of	Watershed Technical
	Agriculture	Workgroup representative
		Modeling Team
Jeff Sweeney	CBPO	representative

Technical support provided by Mark Dubin (University of Maryland), Lindsey Gordon (CRC Staffer), and Don Meals (Tetra Tech).

Practice Categories

- Manure Injection
 - Low disturbance
 - Immediate incorporation
 - Slot closure

Practice Categories

- Incorporation: Low Disturbance
 - ≤30% residue retention (to be consistent with Conservation Tillage BMP)
 - Several tools possible, aerators and vertical tillage most likely
 - Incorporation within 24 hr of manure application for full N credit, 1-3d for a smaller credit

Practice Categories

- Manure Incorporation: High Disturbance
 - >30% residue retention
 - Full width tillage
 - Incorporation within 24 hr of manure application for full N credit, 1-3d for a smaller credit

PRIMARY BENEFITS

- GREATLY REDUCES N LOST AS AMMONIA
 - REDUCED P LOSSES WITH RUNOFF (BOTH DISSOLVED AND SEDIMENT BOUND P)
 - LIKELY IMPACTS N LOSSES WITH RUNOFF, BUT INSUFFICIENT DATA TO DETERMINE EFFICIENCY VALUE
 - LEACHING LOSSES OF N AND P NOT TYPICALLY REDUCED BY INCORPORATION

CONSIDERATIONS

- N AND P LOSSES REDUCTION FACTORS RELATIVE TO UNINCORPORATED, BROADCAST APPLICATION.
 - NO SEDIMENT REDUCTION FACTORS CONSIDERED (HANDLED THROUGH CONSERVATION TILLAGE PANEL)
 - FULL CREDIT FOR AMMONIA VOLATILIZATION REDUCTION REQUIRES MANURE INCORPORATION WITHIN 24 HR. LOWER CREDIT VALUES PROVIDED FOR INCORPORATION WITHIN 1-3 DAYS (CONSISTENT WITH LGU GUIDELINES FOR N CONSERVATION CREDITS).
 - INCORPORATION WITHIN 3 DAYS FOR P REDUCTION CREDIT

REGIONAL DIFFERENCES

- P REDUCTION FACTOR = RUNOFF P REDUCTION FACTOR X PORTION OF TOTAL P LOSSES WITH RUNOFF
 - TWO SETS OF P FACTORS DUE TO DIFFERENCES IN CONTRIBUTION OF RUNOFF TO TOTAL P LOSSES
 - UPLAND REGIONS (PIEDMONT, RIDGE AND VALLEY, AND ALLEGHANY PLATEAU): ASSUMING 80% OF LOSSES WITH RUNOFF
 - COASTAL PLAIN: ASSUMING 48% OF LOSSES WITH RUNOFF
 - ASSUMING 60% OF LOSSES WITH RUNOFF ON WELL DRAINED SOILS (TYPICALLY NATURALLY DRAINED) (\sim 75% OF CROPLAND)
 - ASSUMING 10% OF LOSSES WITH RUNOFF ON POORLY DRAINED SOILS (TYPICALLY DITCH OR TILE DRAINED) (~25 OF CROPLAND)

REDUCTION FACTORS FOR UPLAND REGIONS

0	Nitrogen			Phosphorus			
Category	Time to	Ammonia	Reduction	Time to	Reduction	% of	Reduction
	incorp-	emission	in losses	incorp-	in losses	total P	factor
	oration	reduction	to water	oration	with	losses	
					runoff	with	
						runoff	
Injection	0	85%	0%	0	45%	80%	260/
Injection	U	03%	0%	U	45%	00%	36%
Low	≤24 hr	50%	0%	≤72 hr	30%	80%	24%
Disturb-	24-72 hr	34%					
ance							
Incorp-							
ation							
High	≤24 hr	75%	0%	≤72 hr	0%	80%	0%
Disturb-	24-72 hr	50%					
ance							
Incorp-							
oration							
						0	

REDUCTION FACTORS FOR THE COASTAL PLAIN

0	Nitrogen			Phosphorus			
Category	Time to incorp-oration	Ammonia emission reduction	Reduction in losses to water	Time to incorp- oration	Reduction in losses with runoff	% of total Plosses with runoff	Reduction factor
Injection	0	85%	0%	0	45%	48%	22%
Low Disturb- ance Incorp- ation	≤24 hr 24-72 hr	50% 34%	0%	≤72 hr	30%	48%	14%
High Disturb- ance Incorp- oration	≤24 hr 24-72 hr	75% 50%	0%	≤72 hr	30%	48%	14%

POTENTIAL TRADEOFFS

- HIGH DISTURBANCE TILLAGE CAN INCREASE SEDIMENT LOADING
- INJECTION COULD INCREASE LEACHING WHEN TILE DRAINS OR OTHER PREFERENTIAL FLOW PATHS PRESENT
- INJECTION CAN INCREASE NITROUS OXIDE EMISSION (GREENHOUSE GAS)

DATA LIMITATIONS

- RUNOFF DATA LARGELY FROM SIMULATED RAINFALL
 - GOOD RELATIVE COMPARISON BETWEEN PRACTICES
 - INFORMATION ON TOTAL LOSSES LESS PRECISE
 - EVENT-BASED, NOT SEASONAL OR ANNUAL DATA
- EFFECTS OF PRACTICES DEPEND ON SOIL TYPES, TOPOGRAPHY , AND SOIL AND WEATHER CONDITION AT APPLICATION
 - ADDS VARIABILITY TO PERFORMANCE OF PRACTICES IN THE FIELD
- LEACHING STUDIES LIMITED
- MORE INFORMATION OF NEEDED ABOUT INTERACTIONS WITH OTHER MANAGEMENT PRACTICES, SUCH AS COVER CROPS

VERIFICATION AND HISTORICAL RECORDS

- VERIFICATION THROUGH NUTRIENT MANAGEMENT RECORDS
 FOR DOCUMENTATION OF INCORPORATION TIMING
- INJECTION A RECENT PRACTICE, SO HISTORICAL USE NOT A FACTOR
- TILLAGE INCORPORATION COMMON IN PAST, BUT RECORDS OF INCORPORATION TIMING UNLIKELY BEFORE NUTRIENT MANAGEMENT REQUIREMENTS

PANEL REPORT TIMELINE

CURRENT: PANEL REVIEWING DRAFT REPORT

OCTOBER 31ST: DRAFT PANEL REPORT PROPOSED FOR

RELEASE FOR PARTNERSHIP REVIEW

NOVEMBER: PARTNERSHIP 30-DAY REVIEW PERIOD

EARLY DECEMBER: DRAFT FINAL REPORT RELEASED FOR

PARTNERSHIP REVIEW

• DECEMBER 15TH: AGWG/WTWG DECISIONAL MEETING

• DECEMBER 19TH: WQGIT DECISIONAL MEETING PROPOSED

DECEMBER 31ST: RECOMMENDATIONS INCORPORATED IN

THE PHASE 6 MODELING TOOLS

