OBJECTIVE

Overview

Trend Results 2020

- Summary of short-term trends in TN and TP
- Detailed look at each basin level
- Full summary at % change across TN, N, TP, DIP, SS

Sharing Results

Summary of trends in load through 2020

Total Nitrogen

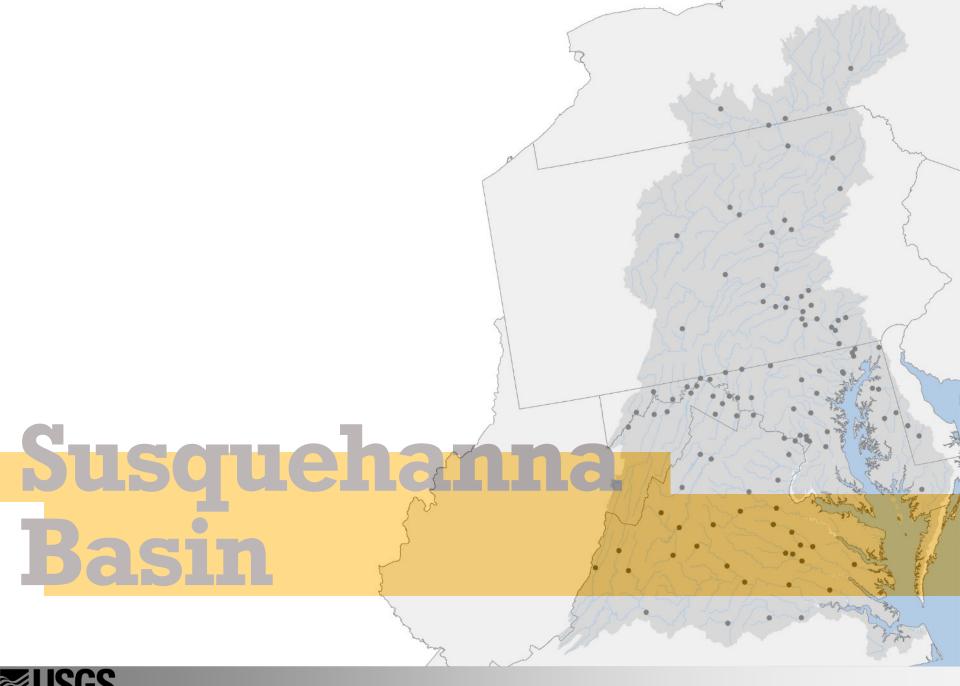
Since ~1985, 52% of stations improved

- Trends Since 2011 -

- 37% of stations improved
- 4/9 River Input stations improved: the Susquehanna, Potomac, James, and Patuxent; representing three of the largest RIM watersheds
- About 35% of Susquehanna stations improved, mostly located in lower portion of the watershed
- 4/6 Western Shore stations improved while 4/5
 Eastern Shore stations degraded
- About the same number Potomac stations improved as degraded
- Most Virginia watershed stations had no trend

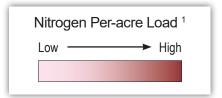
Total Phosphorus

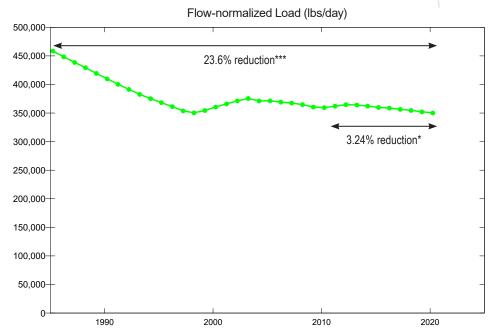
Since ~1985, 67% of stations improved

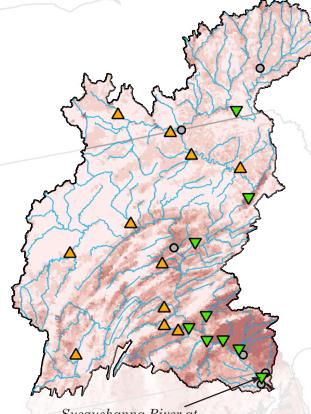

- Trends Since 2011 -

- 44% of stations improved
- 4/9 River Input stations improved: the Susquehanna, James, Patuxent, and Pamunkey
- About 42% of Susquehanna stations improved, located in the upper and lower portion of the watershed
- 3/6 Western Shore stations improved while 4/5
 Eastern Shore stations degraded
- 50% of Potomac stations improved
- 54% of Virginia watershed stations improved

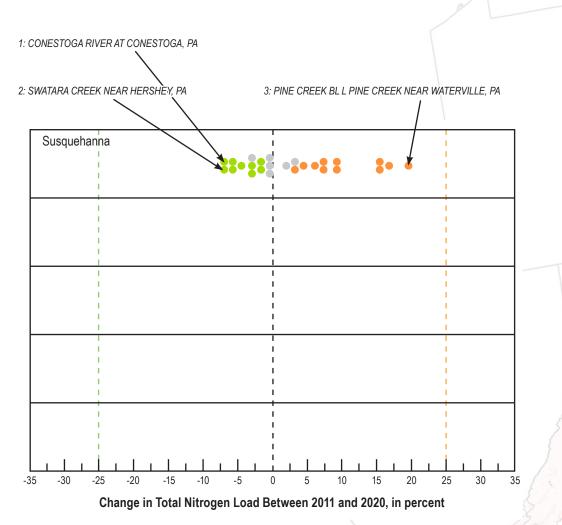
Trends in total nitrogen and phosphorus are influenced by changes in dissolved and particulate material

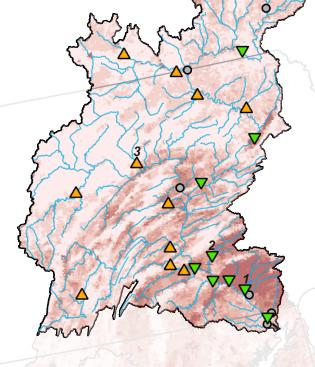

- Since 2011, nitrate degraded at 69% of stations while orthophosphate improved at 66% of stations
- Since 2011, suspended sediment improved at only 18% of stations




The most recent ten year period in the Susquehanna Basin, 2011-2020²

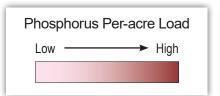
River Input Monitoring station Susquehanna River at Conowingo, MD


Susquehanna River at Conowingo, MD 01578310


¹Ator, S.W., Brakebill, J.W., and Blomquist, J.D., 2011, Sources, fate, and transport of nitrogen and phosphorus in the Chesapeake Bay watershed: An empirical model: U.S. Geological Survey Scientific Investigations Report 2011-5167, p. 27.

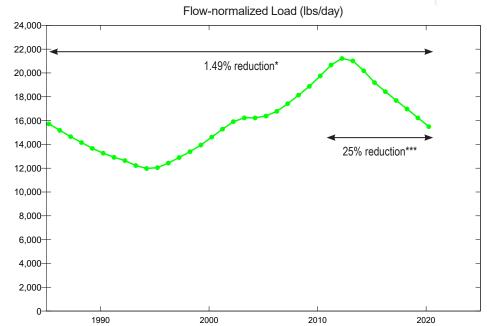
² Mason and others, 2022

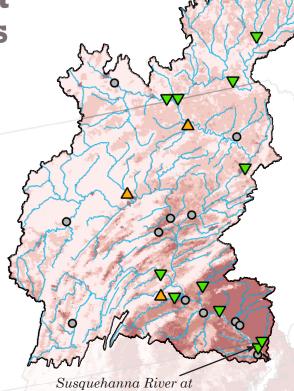
The most recent ten year period in the Susquehanna Basin, 2011-2020



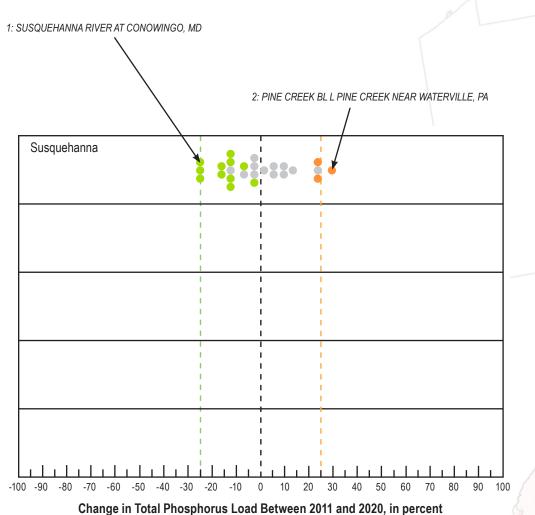
Nitrogen loads (n=26) have improved at 9, degraded at 11, and have no trend at 6 stations.

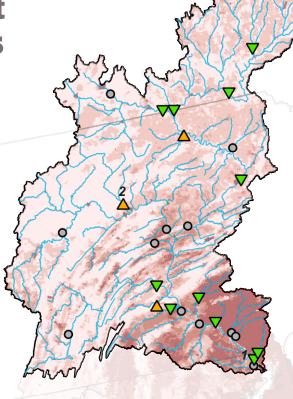
Across the Susquehanna, the median N improvement is 4.5% and the median degradation is 9%.




The most recent ten year period in the Susquehanna Basin, 2011-2020

River Input Monitoring station Susquehanna River at Conowingo, MD

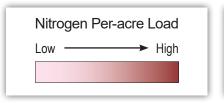


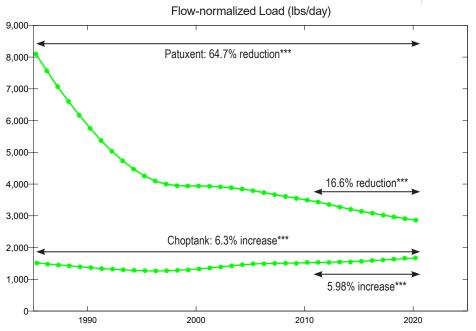


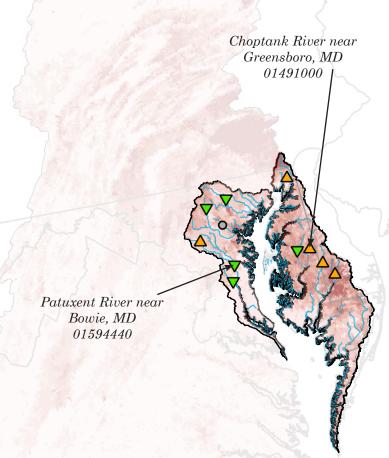
Susquehanna River at Conowingo, MD 01578310

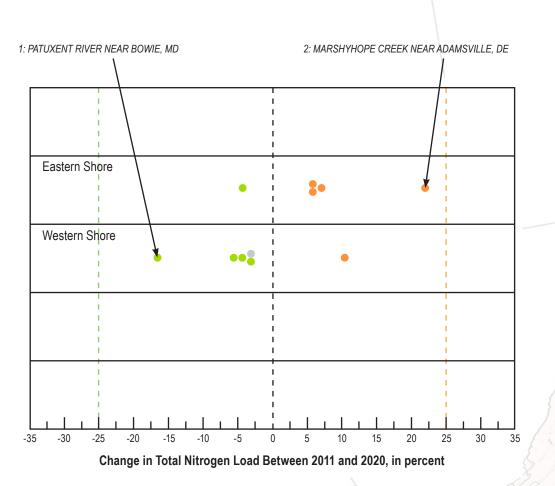
The most recent ten year period in the Susquehanna Basin, 2011-2020

Phosphorus loads (n=26) have improved at 11, degraded at 3, and have no trend at 12 stations.

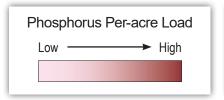

Across the Susquehanna, the median P improvement is 13% and the median degradation is 26%.




The most recent ten year period in the Eastern/Western Shore Basins, 2011-2020

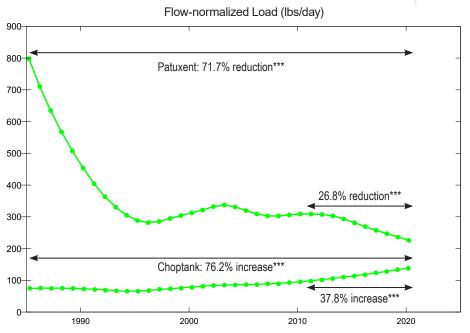

River Input Monitoring stations
Patuxent River near Bowie, MD and Choptank River near Greensboro, MD

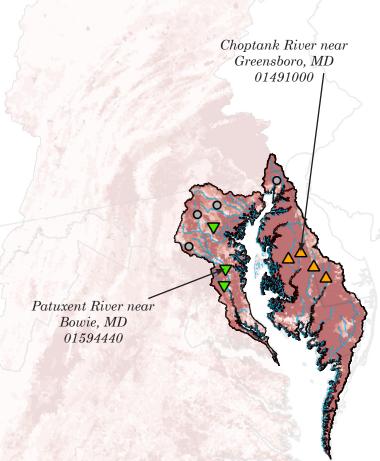
The most recent ten year period in the Eastern/Western Shore Basins, 2011-2020

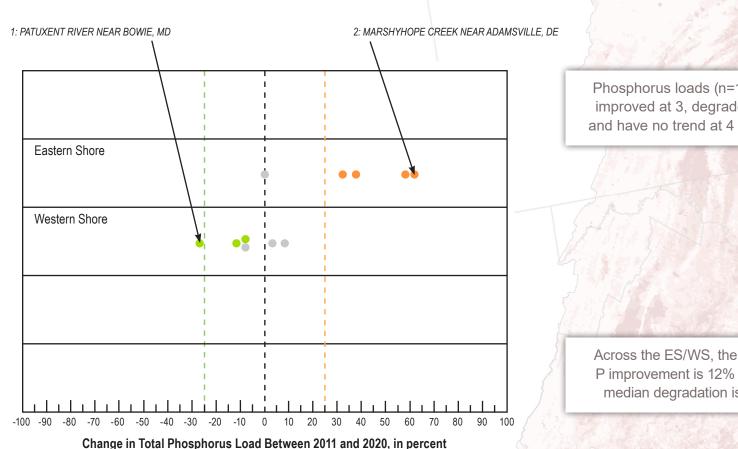


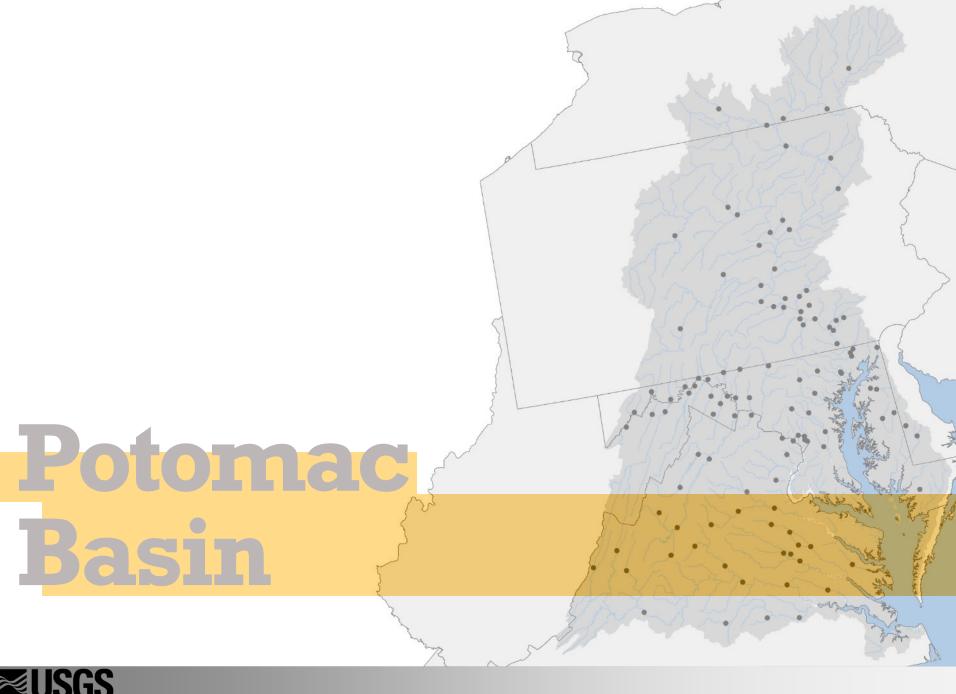
Nitrogen loads (n=11) have improved at 5, degraded at 5, and have no trend at 1 station.

Across the ES/WS, the median N improvement is 4.4% and the median degradation is 7%.

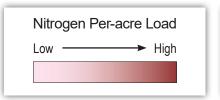


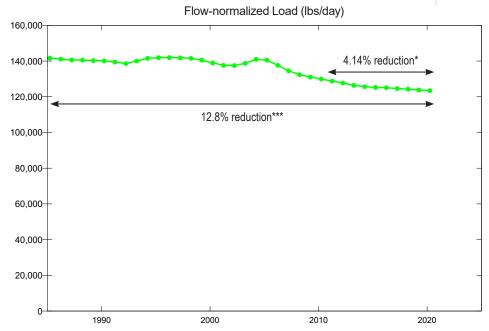

The most recent ten year period in the Eastern/Western Shore Basins, 2011-2020

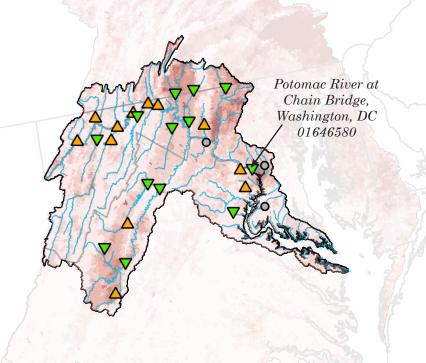

River Input Monitoring stations
Patuxent River near Bowie, MD and Choptank River near Greensboro, MD


The most recent ten year period in the Eastern/Western Shore Basins, 2011-2020

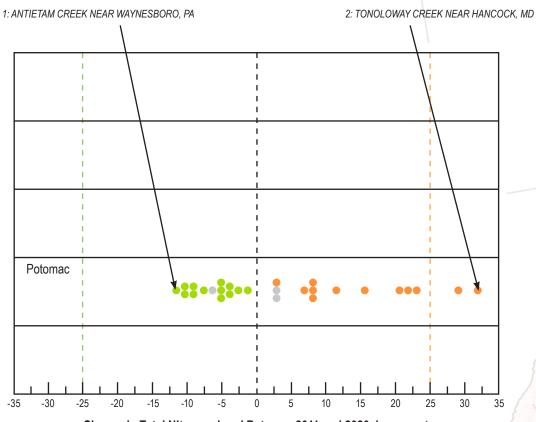
Phosphorus loads (n=11) have improved at 3, degraded at 4, and have no trend at 4 stations.


Across the ES/WS, the median P improvement is 12% and the median degradation is 48%.



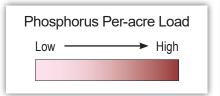

The most recent ten year period in the Potomac Basin, 2011-2020

River Input Monitoring station Potomac River at Chain Bridge, Washington, DC

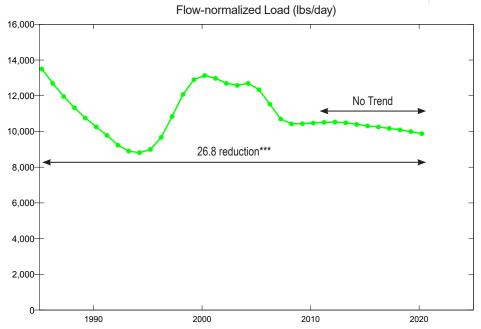


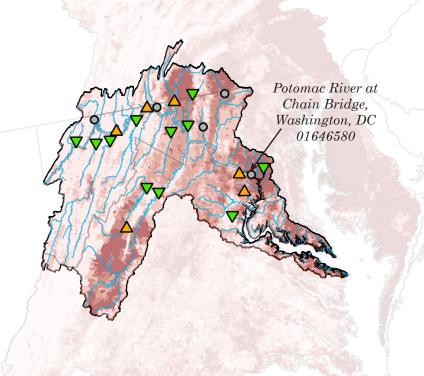
The most recent ten year period in the Potomac Basin, 2011-2020

Nitrogen loads (n=28) have improved at 13, degraded at 12, and have no trend at 3 stations.

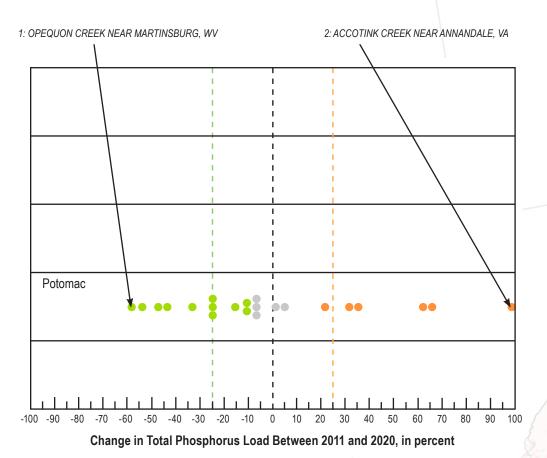

Across the Potomac, the median N improvement is 5.5% and the median degradation is 14%.

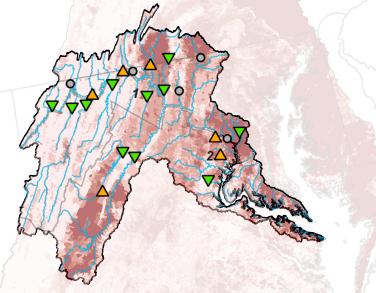
Change in Total Nitrogen Load Between 2011 and 2020, in percent



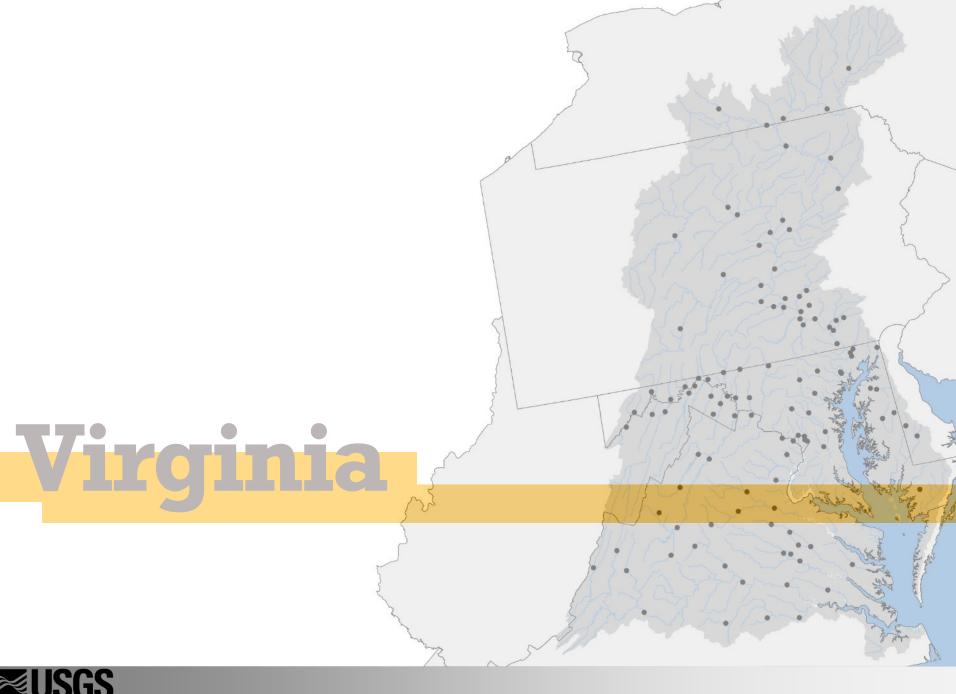

The most recent ten year period in the Potomac Basin, 2011-2020

River Input Monitoring station Potomac River at Chain Bridge, Washington, DC

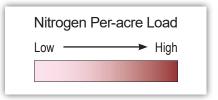


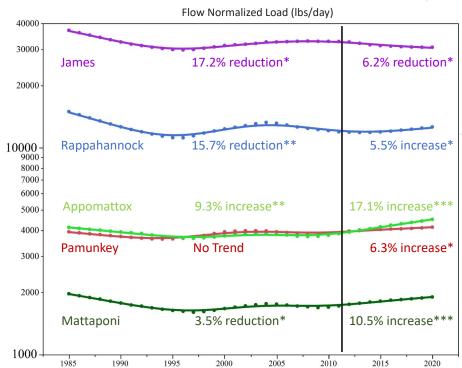


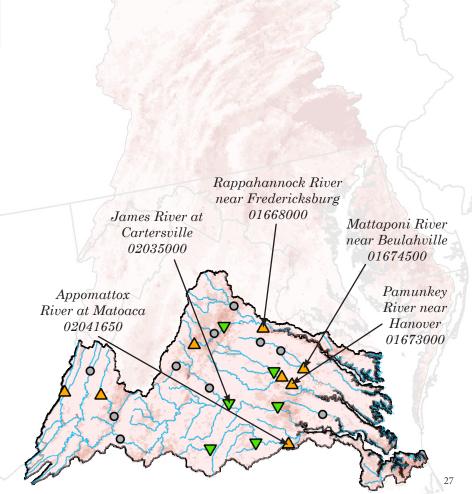
The most recent ten year period in the Potomac Basin, 2011-2020

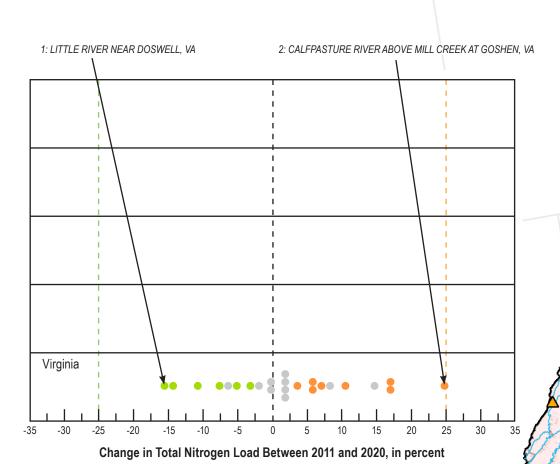

Phosphorus loads (n=22) have improved at 11, degraded at 6, and have no trend at 5 stations.

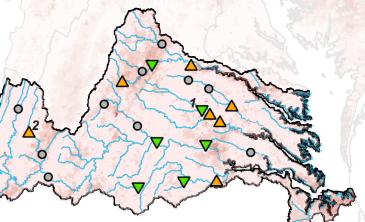
Across the Potomac, the median P improvement is 26% and the median degradation is 48%.



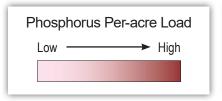



The most recent ten year period in Virginia, 2011-2020

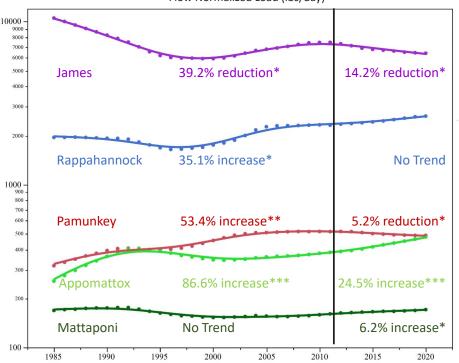

Five River Input Monitoring stations in Virginia

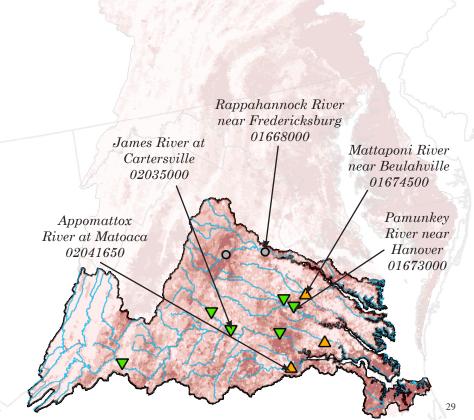


The most recent ten year period in Virginia, 2011-2020


Nitrogen loads (n=24) have improved at 7, degraded at 8, and have no trend at 10 stations.

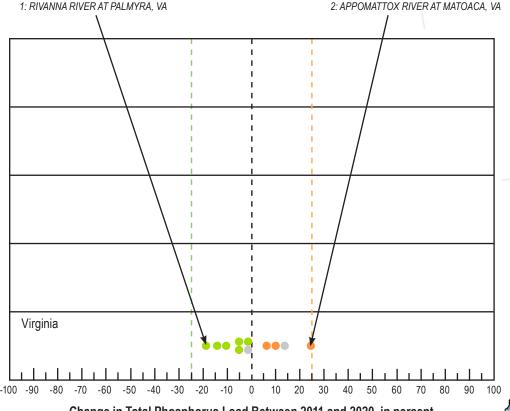
Across Virginia, the median N improvement is 9% and the median degradation is 8%.


The most recent ten year period in Virginia, 2011-2020



Five River Input Monitoring stations in Virginia

Flow Normalized Load (lbs/day)



The most recent ten year period in Virginia, 2011-2020

Phosphorus loads (n=11) have improved at 6, degraded at 3, and have no trend at 2 stations.

Across Virginia, the median P improvement is 8% and the median degradation is 9%.

Change in Total Phosphorus Load Between 2011 and 2020, in percent

Trend Direction, 2011-2020

Percent change in flownormalized load (numbers) at the nontidal network

	TN	N+N	TP	DIP	SS
01502500	1.97	13.1	-25	-38.5	-1.55
01503000	-2.81	1.31	-2.19	-54.5	98.2
01515000	2.88	5.13	-16	-41.8	104
01529500	6.16	21.5	-14.6	-49.9	8.94
01531000	9.12	13.2	-24.8	-60.1	70.8
01531500	4.05	5.49	25.6	-53.3	90.4
01534000	16.8	21.4	22.3	25.7	91.7
01536500	-1.36	5.07	-7.64	-42.2	12.2
01540500	-4.54	0.516	-0.901	-54	31
01542500	6.1	17.3	-6.02		-1.49
01549700	19.6	43	29.5		72.2
01553500	-0.754	5.03	-3.97	-34	25.3
01555000	7.33	11	1.47	12.1	-17.5
01562000	15.1	19.6	12.1	2.08	28.7
01567000	9.41	15.6	-16.2	-19.6	-1.89
01568000	15.8	18.6	23.1	22.8	32.8
01570000	3.45	2.96	-11.8	-12	-13.9
01571500	-5.65	-8.92	10.1	16	31.6
01573560	-6.9	-9.61	-13.2	-18.6	-15
01574000	-1.97	-7.3	5.67	9.52	16.1
01576000	-6.01	-1.64	-13.4	-13.2	0.774
01576754	-7.09	-9.25	-3.17	-13.3	18.7
01576787	-2.9	-5.45	9.15	-10.4	20
01578310	-3.24	7.64	-25	-14.1	-34.4
01578475	-0.357	0.929	-13.2	-23	5.87
01580520	-0.173	0.934	5.19	-29	40.2

		TN	N+N	TP	DIP	SS
SHORE	01487000	7.05	21.9	58.2	-11.8	80.8
똜	01488500	22	26.5	61.7	62.6	63.6
	01491000	5.98	1.7	37.8	51	24
EASTERN	01491500	-4.33	-7.64	32.3	38.9	36.2
EAS	01495000	5.6	3.98	0.112	-16.8	24.7
		TN	N+N	TP	DIP	SS
RE	01582500	-2.97	-2.46	8.36	-26.1	49.5
로	01586000	-5.62	-4.17	-8.61	-12.8	8.42
S	01589300	-3.4	9.24	-11.6	-27.9	9.72
EB	01591000	10.4	9.83	3.26	17.2	33.1
WESTERN SHORE	01594440	-16.6	-18.8	-26.8	-20.4	-27.4
≥	01594526	-4.43	9.34	-9.17	-6.51	-0.887

TN N+NTP DIP SS 16.3 -23 -42.6 -10.3 01599000 3.46 33.9 4.03 -33.1 33 01601500 29.1 -5.39 -0.852 -53.8 -34.5 -16.4 01604500 01608500 8.52 3.26 -47.2 -83.5 41.5 34.1 62.2 24.8 01609000 23 01610155 36.2 7.94 -14.2 01611500 -10.2 -33.1 4.36 01613095 31.9 41.1 21.7 8.43 01613525 18.4 -6.51 -38.8 -55.7 20.6 01614500 -8.07 15.6 -3.56 34.4 -1.34 -58.2 01616500 -7.05 -78.5 39.5 -9.42-14.8 01619000 -11.6 -43.7 -5.16 -24.9 01619500 -8.86 -14.1 -10.5 -41.6 67.4 01621050 -7.62 -9.76 21.7 29.7 01626000 01628500 -4.45 4.2 01631000 -5.28 9.98 -26.2 -23.9 -23.6 8.11 -22.4 01632900 6.88 31.7 73.9 01634000 -1.27 -43.5 -38.4 -49.7 10.4 21.6 01637500 15.6 1.33 -13.3 29.6 01638480 2.49 13.7 5.45 01639000 -5.49 -7.23 2.34 -9.79 21.2 65 43.6 128 01646000 11.5 -4.14 3.64 -30.6 01646580 -6.06 6 12.9 -15.4 19.1 01651000 -7.09 -1.26 01654000 7.76 -7.64 99.9 37.9 267 01658000 2.66 -8.19 01658500 -11.3 -6.14 -10.7 -6.94 Constituents from left-to-right: TN (total nitrogen), N+N (nitrate plus nitrite), TP (total phosphorus), DIP (orthophosphate), SS (suspended sediment)

		TN		N+N	TP	DIP	SS
	01664000	-0.294		7.25			
	01665500	6.08		21.7			
	01666500	8.11		21.8			
	01667500	-10.8		5.15	-2.21	14.2	0.557
	01668000	5.5		14.8	13.7	6.77	16.1
	01671020	3.57		48.2	-5.08		-13.1
	01671100	-15.6		5.19			
	01673000	6.29		22.7	-5.22	-10.3	-16.4
	01673800	2.36		16.7			
	01674000	1.68		28.3			
A	01674500	10.5		45.7	6.24	-0.538	25
VIRGINIA	02011500	16.9		28.1			
	02015700	14.7		28.7			
	02020500	24.8		39.8			
	02024000	1.55		18.5			
	02024752	-2.53		19.4	-10.5	-12.2	-12.6
	02031000	1.7		22.4			
	02034000	-6.7		-14.7	-18.8	-19.2	-22.1
	02035000	-6.17		3.86	-14.2	-11.1	-11
	02037500	-14.9		6.41	-4.01		4.49
	02039500	-7.66		23.2			
	02041000	-3.22		12.8			
	02041650	17.1		28.4	24.5	48.3	29.7
	02042500	-0.175		144	8.75		25.5

SUSQUEHANNA