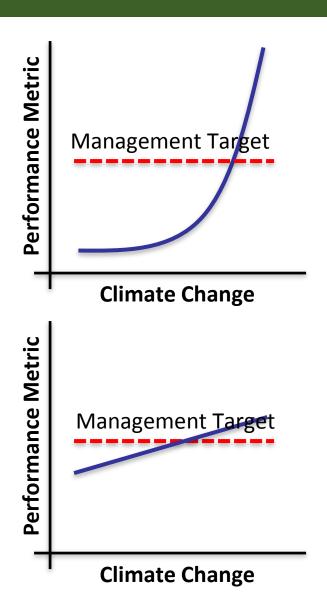

Climate Resilience Implications for Built Environments and the Bay


Chris Pyke, Ph.D.
Vice President Research
U.S. Green Building Council

C 0

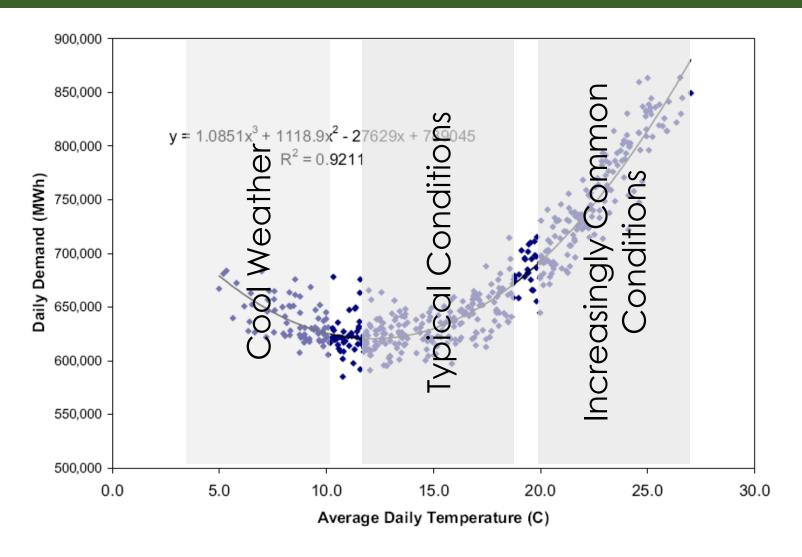
Targets x Systems x Scenarios

Systems

Buildings

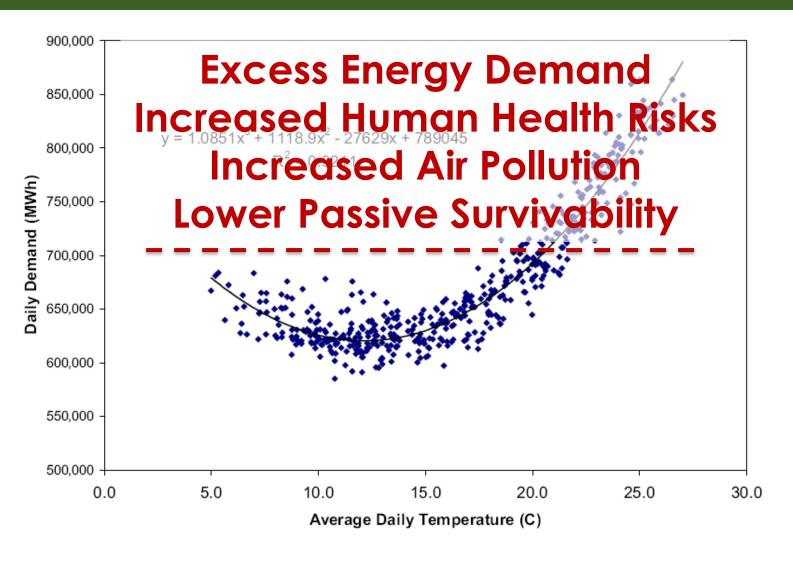
Stormwater

Buildings: Targets & Scenarios


Buildings are designed based on historic conditions e.g., Typical Meteorological Year

Future conditions are unlikely to match historic assumptions

e.g., minimum rise of 1.5° C by 2020; potential for >5° C



Buildings: Energy Demand

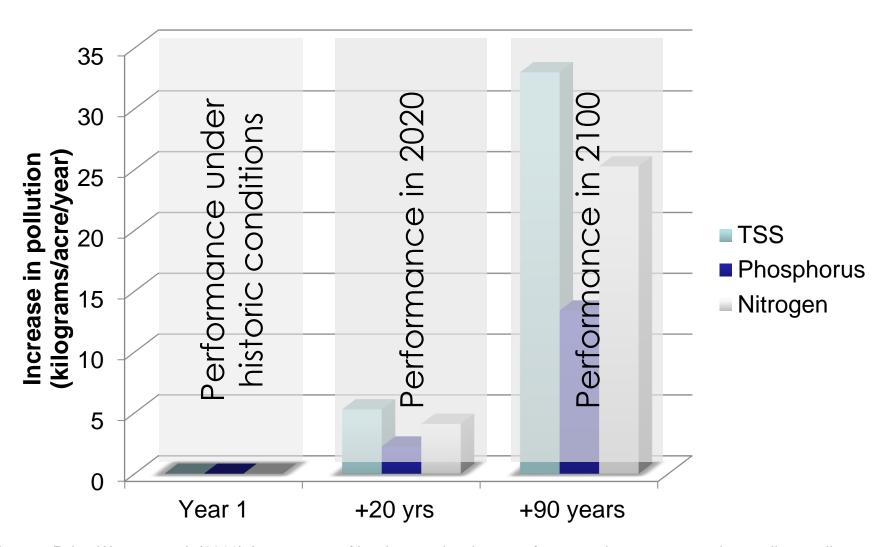
Source: Franco and Sanstad (2008) Climate change and electricity demand in California

Buildings: Energy Demand

Source: Franco and Sanstad (2008) Climate change and electricity demand in California

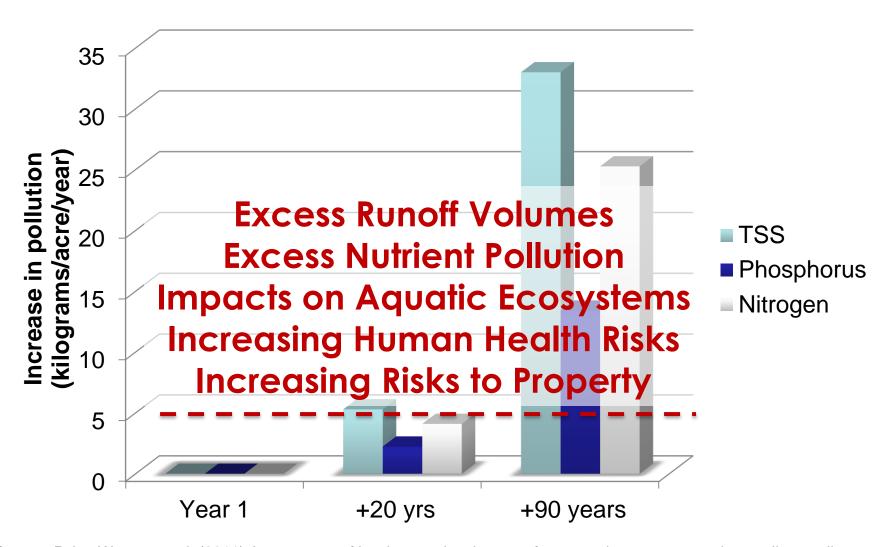
Stormwater: Targets & Scenarios

Stormwater control strategies are based on historic design storms


e.g., storm intensity, frequency

Trends indicate an increased frequency of high-intensity precipitation events

e.g., in New England +28% in 20 years, +127% in 90 years



Stormwater: Runoff

Source: Pyke, Warren, et al. (2011) Assessment of low impact development for managing stormwater due to climate climate

Stormwater: Runoff

Source: Pyke, Warren, et al. (2011) Assessment of low impact development for managing stormwater due to climate climate

Climate Resilience is...

- A new dimension to everyday decisions.
- An opportunity to prepare for future conditions.
- Needed to meet performance targets across the lifetime of investments.

Chesapeake Bay

Chesapeake Bay Systems

Water Quality

- Watershed
- Estuary

Living Resources

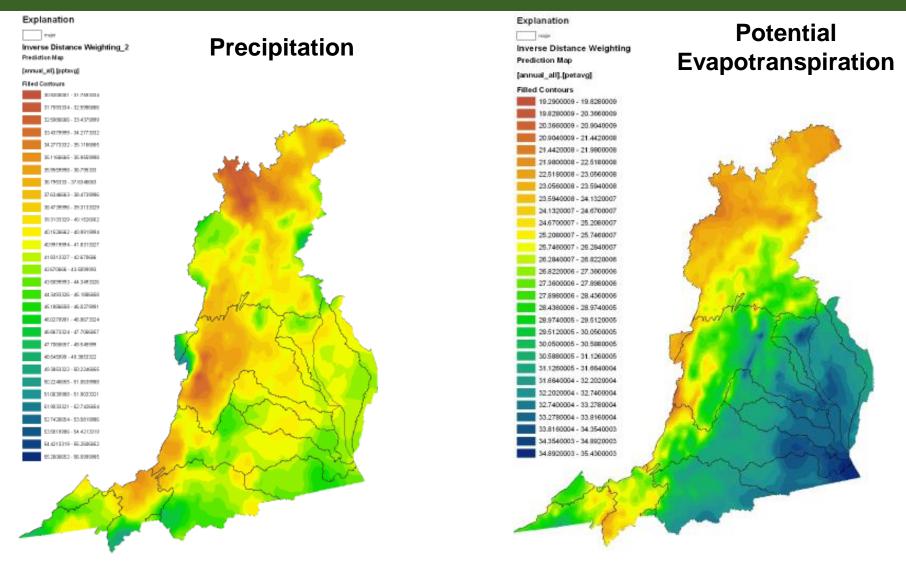
- Populations
- Communities
- Habitat

Chesapeake Bay Targets

Water Quality

 e.g., pollutant load allocations, designated uses, etc.

Living Resources


 e.g., SAV restoration, oysters, fisheries, wetlands, etc.

Chesapeake Bay Scenarios

- Sea level: +0.5 to >1.0m
- Temperature: +2 to >8° C
- Annual precipitation: -10% to +20%
- Winter runoff: higher
- Summer runoff: lower

Chesapeake Bay Watershed Model

[&]quot;Normal" based for 18 year simulation period based on meteorological data for 1984-2002

The model uses a **10-year span of meteorological information**, including a mix of wet, dry, and average rainfall years, to estimate the amounts of nutrients washed off the landscape....

The output is then averaged over the 10 years to determine the amount of nutrients delivered to streams and the Bay under "normal" conditions...

The old model [Phase 4.3] used meteorology from 1985 through 1994, the most recent data available at the time. But a recent, longer-term analysis covering 30 years of data, found that 1985-94 was actually about 5 percent drier than normal.

A switch to using data from 1991 through 2000 [Phase 5.1], which is **more representative** of long-term hydrology, increases estimates of nutrient runoff-wet conditions drive **more nutrients into** streams....

Monocacy Watershed Case Study

Net 11% increase in N loading, variation in sensitivity to climate change:

- High till agricultural land with manure application
- Low till nutrient management lands
- Bare construction lands
- 18% of watershed, 47% of increase in total N loads

Table 1. Change in total nitrogen load contribution attributable to selected climate

change scenario in Monocacy River Basin, Maryland.

		base conditions	base conditions	climate change scenario	climate change scenario		
Land Use	Area	Load	Total Load	Load	Total Load	% Change	% of Total
	(ha)	(kg/ha)	(kg)	(kg/ha)	(kg)	in Unit Load	Change
forest	86581	2.34	202287	3.20	276935	36.9%	26.0%
nutrient management hitil with manure	17900	32.29	577995			10.7%	21.6%
nutrient management lotil	24539	21.56	529020			8.4%	15.4%
bare-construction	2535	40.62	102959			28.7%	10.3%
lowtill with manure	5210	44.89	233892			9.1%	7.3%
hightill with manure	3792	73.96	280488			6.6%	6.4%
pasture	23079	5.37	123919			3X:11+%	707
nutrient management hay	16002	8.77	140300		153060	9.1%)//0
low intensity pervious urban	31408	5.71	179259			2.7%	1.7%
harvested forest	875	49.54	43330			7.1%	1.1%
high intensity pervious urban	8533	5.67	48401	5.80		2.3%	0.4%
alfalfa	5505	12.21	67239			1.4%	0.3%
nursery	1147	23.40	26845	24.08	27625	2.9%	0.3%
extractive	115	17.28	1988			27.5%	
hightill without manure	183	50.91	9294	54.03	9863	۱in:۵۲.5%	1% 0.2%
hay with nutrients	4581	8.15	37324	8.23	37692	1.0%	0.1%
nutrient management hitil without manure	944	27.50	25966	27.68	26138	0.7%	0.1%
trampled	116	65.37	7582	65.38	7583	0.0%	0.0%
natural grass	3348	3.19	10680	3.07	10265	-3.9%	-0.1%
hay without nutrients	7245	6.24	45238	6.05	43838	-3.1%	-0.5%
total load			2694006		2980840	10.7%	

Implications for Restoration

- Pollution inputs are sensitive to climate.
- Restoration strategies rely on assumptions about current and future climate.
- The sensitivity of individual practices varies.
- Some restoration practices offer immediate opportunities to increase resilience.

Bay Program Actions

- Meet 2009 Executive Order requirements:
 - A comprehensive climate change assessment
 - Implement a plan to address climate change in decision making
- Create and use new tools to identify climate sensitivities and adaptation opportunities
- Create and apply new metrics to track adaptation implementation and outcomes