

Chesapeake Bay Watershed Agreement

II. Goal, Outcomes and Baseline

This management strategy identifies approaches for achieving the following goal and outcomes:

Climate Resiliency Goal

Increase the resiliency of the Chesapeake Bay watershed, including its living resources, habitats, public infrastructure and communities, to withstand adverse impacts from changing environmental and climate conditions.

Monitoring and Assessment Outcome

Continually monitor and assess the trends and likely impacts of changing climatic and sea level conditions on the Chesapeake Bay ecosystem, including the effectiveness of restoration and protection policies, programs and projects.

Adaptation Outcome

Continually pursue, design and construct restoration and protection projects to enhance the resiliency of Bay and aquatic ecosystems from the impacts of coastal erosion, coastal flooding, more intense and more frequent storms and sea level rise.

Relevant Climate Resiliency Work Plan Actions

Action #	Description		Performance Target		
Monitoring and Assessment – Assess past and future trends					
1.1	Design, implement, and maintain existing climate indicators and datasets		Continue to evaluate data to develop future climate change indicators including, but not limited to, fish population distribution, bay water temperature, tree canopy		
Adaptation – Address the design and function of BMPs under a new climate reality					
1.1	Pursue priority recommendations from STAC workshop on BMP siting and design (2017)	Review and compile general guidance for BMP siting and design under future climate change			
1.2		_	long term plans to address the broader, ntal science needs of climate impacts on BMPs		

Workshop Report: Monitoring and Assessing Impacts of Changes in Weather Patterns and Extreme Events on BMP Siting and Design, https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NRMRL&dirEntryId=341421

Monitoring and Assessment: Climate Resiliency Workgroup (CRWG) Projects

- Climate Indicator Development (~ Oct 2020 Dec 2022)
 - Develop 2-3 new climate indicators that have cross-workgroup use related to water quality, habitat, living resources, and/or communities

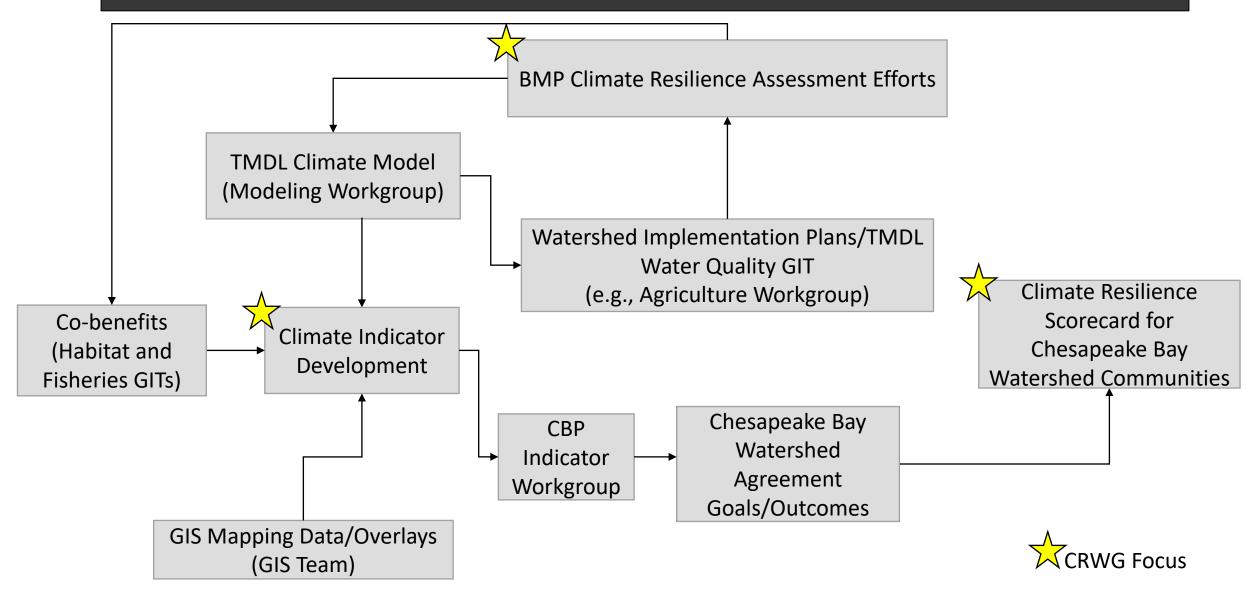
- GIT-Funded Bay-Wide Climate Resilience Scorecard (~ May 2020 Sep 2021)
 - Contract awarded to RAND Corporation (Point of Contact: Krista Romita Grocholski)
 - Develop method to track climate resilience progress by inland and coastal communities in the Chesapeake Bay Watershed

Adaptation Projects: BMP Climate Resilience Assessment Efforts

- STAC-Funded Climate Change Science Synthesis (~ Jan 2020 Jan 20201)
 - Point of Contacts: Kurt Stephenson and Zach Easton
 - Awarded to Virginia Tech: Assessing questions related BMP performance (nutrient/sediment cycling) to climate change impacts (e.g., warming, precipitation changes, extreme weather events, changes to growing season)
 - Includes focus on priority ag BMPs in Phase III WIPs
 - E.g., cover crops, animal waste management systems, grass and forest buffers, conservation plans, conservation tillage, nutrient management, pasture fencing, phytase feed additives, precision grazing, non-urban stream restoration
- NOAA-EPA Interagency Agreement BMP Climate Funds (FY21)
 - Point of Contact: Julie Reichert-Nguyen
 - Additional funds to support the assessment of BMP performance under changing climate conditions
 - Includes focus on tidal BMPs with co-benefits related to habitat and living resources (e.g., living shorelines, oyster practices)

Adaptation Projects: BMP Climate Resiliency Assessment Efforts

- Urban Stormwater Workgroup (Point of Contact: David Wood, Chesapeake Stormwater Network)
 - GIT-Funded Piloting the Development of Probabilistic Intensity Duration Frequency (IDF) Curves for Chesapeake Bay Watershed (~ March 2020 – March 2021)
 - Evaluation of climate downscaling methods/calibration with historical precipitation extremes; quantification of climate model uncertainties for projected precipitation extremes
 - Urban stormwater BMP climate vulnerability assessment (~ Jan 2020 October 2020)


Local Government Advisory Committee (LGAC) and CRWG Collaboration

Virtual Flood Summit (September 24, 2020)

Problem Statement: As more and more communities face the increasing challenge of climate-related disasters involving inland and coastal flooding from extreme weather events, high tides, and sea level rise, there is a growing need for local decision makers to combine efforts across localities to harness support at a regional level to make the case to state and federal partners for funding actions to improve resiliency. Framing the issue, and making it one of hazard mitigation, national security, public safety, and economic vitality is critical to quantify the cost of doing nothing compared to securing resources to prepare for and better respond to flooding impacts.

Point of Contacts: Jennifer Starr, LGAC Coordinator (Alliance for the Chesapeake Bay) and Julie Reichert-Nguyen, CRWG Coordinator (NOAA)

Climate Resiliency Cross-Workgroup Collaboration

CRWG Climate Indicators Project

- GIT Funded Project:
 - 2017 2018
 - Eastern Research Group, Inc. (ERG)
- Goal: Conceptualize, select, and partially develop a suite of indicators that can be used to track progress toward the Climate Resiliency goal and outcomes in the 2014 Watershed Agreement

Climate Change Indicators for the Chesapeake Bay Program: An Implementation Strategy

Submitted to:

Chesapeake Bay Program 410 Severn Avenue, Suite 109 Annapolis, MD 21403

Submitted by:

Eastern Research Group, Inc. 2300 Wilson Blvd, Suite 350 Arlington, VA 22201

Revised Edition July 13, 2018

Indicator development process

210 topics

• ERG developed a master list of potential topics

21 indicators

- Criteria was created for choosing indicators for development
- ERG proposed a suite of 21 indicators for possible development
 - Indicator Implementation Plan

10 CBP indicators

- Data and metrics for 9 indicators were available immediately
- Three were existing indicators with other workgroups: Protected Lands and Restored Oyster and Ag Wetland Habitat
- Seven were new climate indicators posted to Chesapeake Progress
- https://www.chesapeakeprogress.com/climate-change/climate-monitoring-and-assessment

Climate Indicator Development

CBP Workgroup Outreach

 Link climate indicator work with goals and outcomes in Watershed Agreement

Climate Indicators

 Evaluate implementation readiness of indicators

CRWG Focus

 Strategize which climate indicators to focus development on based on available resources

Climate Indicator Framework

Physical Indicators (Signals of Change)

Impact Indicators (Ecological and Community Threats)

Climate Resilience Indicators (Preparedness)

Topic (green = indicator available)	Anticipated	Anticipated
Topic (green - mulcator available)	cost	timeframe
Group A: Indicators for Physical Stressors		
Air Temperature	Low	Short-term
Precipitation	Low	Short-term
Sea Level Change	Low	Short-term
Stream Water Temperature	Low	Short-term
Acidification (low pH; low carbonate availability)	Low	Short-term
Bay Water Temperature	Moderate	Short-term
Group B: Indicators for Climate Related Impacts		
Upstream Flooding (River Flood Frequency & Magnitude)	Low	Short-term
Coastal Flooding	Low	Short-term
Submerged Aquatic Vegetation Composition	Medium	Medium-term
Wetland Extent and Physical Buffering Capacity	Medium	Short-term
Bird Species Ranges	Medium	Medium-term
Property at Risk or Damaged	High	Long-term
Fish Population Distribution	High	Long-term
Harmful Algal Blooms	TBD	Short-term
Group C: Indicators to Measure Climate Resilience		
Protected Lands	None	Short-term
Restored Habitat (Oyster and Ag wetlands)	None	Short-term
Land Use/Land Cover	Medium	Short-term
BMPs and Green Infrastructure	High	Medium-term
Shoreline Condition	High	Medium-term
Wetland Migration Corridors	High	Medium-term
Urban Tree Canopy	TBD	Short-term

GREEN = Indicator of some sort available on Chesapeake Progress

CBP Workgroup Interests (Habitat and Living Resources)

Wetlands Workgroup

SAV Workgroup

Forestry Workgroup

Fish Habitat Team

Fish Forage Team

Healthy Watersheds Preliminary
Evaluation:
Selected by 4 or
more workgroup
leads

Example from Workgroup Input

Physical Indicators (Signals of Change)

Impact Indicators (Ecological and Community Threats)

Climate Resilience Indicators (Preparedness)

Example:

Change in Water Temperature

Habitat quality

- Suitability for key fish (brook trout, striped bass, forage fish) and SAV species
- Fish, SAV, tree species abundance and distribution

BMP Implementation

 Temperature lowering BMPs (e.g., forest buffers) in high priority aquatic habitat areas

Next Steps

- Identify specific resilience indicators of interest with individual workgroups
 - As BMP and modeling efforts progress, coordinate with Agriculture
 Workgroup to determine if there are agriculture-related climate resilience
 indicators that can be pursued
 - Are there any existing metrics/indicators that could be incorporated in the Climate Resilience Scorecard?
- Expand BMP climate assessment efforts to include sea level rise
 - Interest has been expressed to include evaluation of flooding and saltwater inundation impacts for relevant BMPs (could be relevant to some agriculture BMPs for coastal farms)

QUESTIONS