
Stream Health Workgroup

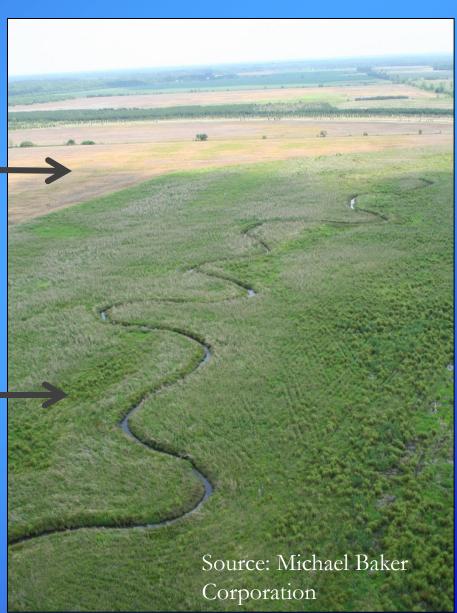
Mark A. Secrist
U.S. Fish and Wildlife
Service

Functional Lift Framework: A Guide for Restoring Stream Functions

20th Century Shift

Traditional Channel Design

Transport water quickly; Bed and banks don't move


Natural Channel Design

Create a dimension, pattern, and profile that transports water and sediment.

21st Century Goal

Restoration of Dimension, Pattern, and Profile

Stream Functions Pyramid

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

4 PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

PHYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

Stream Functions Pyramid

A Guide for Assessing & Restoring Stream Functions » OVERVIEW

Biological

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

Chemical

4 PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

Physical

GEOMORPHOLOGY » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

 $m{\gamma}$ HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

HYDROLOGY » Transport of water from the watershed to the channel

Function - The physical, chemical, and biological processes that occur in ecosystems.

Stream Functions Pyramid

A Guide for Assessing & Restoring Stream Functions » OVERVIEW

Site Selection

5 BIOLOGY » Biodiversity and the life histories of aquatic and riparian life

4 PHYSICOCHEMICAL » Temperature and oxygen regulation; processing of organic matter and nutrients

Reach Scale Improvements **GEOMORPHOLOGY** » Transport of wood and sediment to create diverse bed forms and dynamic equilibrium

HYDRAULIC » Transport of water in the channel, on the floodplain, and through sediments

Independent Variables HYDROLOGY » Transport of water from the watershed to the channel

Parameters and Measurement Methods

HYDROLOGY		
Parameter	Measurement Method	
Channel-Forming Discharge	1. Regional Curves	
Precipitation/Runoff Relationship	Rational Method	
	2. HEC-HMS	
	3. USGS Regional Regression Equations	
Flood Frequency	1. Bulletin 17b	
Flow Duration	Flow Duration Curve	
	2. Crest Gage	
	3. Monitoring Devices	
	4. Rapid Indicators	
HYDRAULICS		
Parameter	Measurement Method	
Floodplain Connectivity	1. Bank Height Ratio	
	2. Entrenchment Ratio	
	3. Stage Versus Discharge	
Flow Dynamics	1. Stream Velocity	
outersoon in prof. Wy, dan to discriminate	2. Shear Stress	
	3. Stream Power	
Groundwater/Surface Water Exchange	1. Piezometers	
-200	2. Tracers	
	3 Seepage Meters	

Parameter	Measurement Method	
Microbial Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Macrophyte Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Benthic Macroinvertebrate Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Fish Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Landscape Connectivity	Spatial Analysis Species Tracking Habitat Models	

GEOMORPHOLOGY	
Parameter	Measurement Method
Sediment Transport Competency	1. Shear Stress Curve
	2. Required Depth and Slope
	3. Spreadsheets and Computer Models
Sediment Transport Capacity	1. Computer Models
	2. FLOWSED and POWERSED
	3. BAGS
Large Woody Debris Transport and Storage	1. Wohl, et al. (2009)
	Large Woody Debris Index
Channel Evolution	Simon Channel Evolution Model
	Rosgen Stream Type Succession Scenarios
Bank Migration/Lateral Stability	1. Aerial Photography
	2. BEHI/NBS
	3. Bank Pins
	4. Bank Profiles
	5. Cross-Sectional Surveys
	6. Bank Stability and Toe Erosion Model
Riparian Vegetation	1. Buffer Width
Apartan regetation	2. Buffer Density
	3. Buffer Composition
	4. Buffer Growth
	5. Canopy Density
	6. Proper Functioning Condition (PFC)
Bed Form Diversity	Percent Riffle and Pool
Ded For III Diversity	2. Facet Slope
	3. Pool-to-Pool Spacing
	4. Depth Variability
Bed Material Characterization	Beyonger and King (1995)
Ded Material Characterization	2. Riffle Stability Index (RSI)
PHYSIOCHEMICAL	z. Rine Stability index (161)
Parameter	Measurement Method
Basic Water Chemistry	Temperature
Dasic Water Chemistry	2. Dissolved Oxygen
	Conductivity
	4. pH
	5. Turbidity
Nutrients	Field test kits using reagents reactions
Nutrients	
0 : 0 1	
Organic Carbon	Laboratory analysis

Parameters and Measurement Methods

GEOMORPHOLOGY

Sediment Transport Competency

HYDROLOGY		
Parameter	Measurement Method	
Channel-Forming Discharge	1. Regional Curves	aro.
Precipitation/Runoff Relationship	Rational Method	GEOM
	2. HEC-HMS	Paran
	3. USGS Regional Regression Equations	Sedime
Flood Frequency	1. Bulletin 17b	
Flow Duration	1. Flow Duration Cur Parameter	
	2. Crest Gage	
	3. Monitoring Device	
	4. Rapid Indicators	
HYDRAULICS	Floodplain Co	nnectivity
Parameter	Measurem. Method	inicotivity
Floodplain Connectivity	Ratio	
	2. Entry alment Rat	
	3. Stage Versus Discl	
Flow Dynamics	Stream Velocity	
	2. Shear Stress	
	Stream Power	
Groundwater/Surface Water Exchange	1. Piezometers	-
	2. Tracers	Riparia
	3. Seenage Meters	

Parameter	Measurement Method	
Microbial Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Macrophyte Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Benthic Macroinvertebrate Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Fish Communities	Taxonomic Methods Non-Taxonomic Methods Biological Indices	
Landscape Connectivity	Spatial Analysis Species Tracking Habitat Models	

3. Sta	ge/Q Relationships
	6. Bank Stability and Toe Erosion Model
Riparian Vegetation	1. Buffer Width
	2. Buffer Density
	3. Buffer Composition
	4. Buffer Growth
	5. Canopy Density
	6. Proper Functioning Condition (PFC)
Bed Form Diversity	Percent Riffle and Pool
	2. Facet Slope
	3. Pool-to-Pool Spacing
	4. Depth Variability
Bed Material Characterization	Bevenger and King (1995)
	2. Riffle Stability Index (RSI)
PHYSIOCHEMICAL	
Parameter	Measurement Method
Basic Water Chemistry	1. Temperature
	2. Dissolved Oxygen
	3. Conductivity
	4. pH
	5. Turbidity
Nutrients	Field test kits using reagents reactions
	Laboratory analysis
Organic Carbon	Laboratory analysis

Measurement Method

Measurement Method

Bank Height Ratio

Entrenchment Ratio

Shear Stress Curve

Performance Standards Floodplain Connectivity Example

Measurement Method	Functioning	Functioning-At- Risk	Not Functioning
Bank Height Ratio (BHR)	1.0 to 1.2	1.3 to 1.5	> 1.5
Entrenchment Ratio (ER) for C and E Stream Types	> 2.2	2.0 to 2.2	< 2.0
Entrenchment Ratio (ER) for B and Bc Stream Types	> 1.4	1.2 to 1.4	< 1.2
Dimensionless rating curve	Project site Q/Q _{bkf} plots on the curve	Project site Q/Q _{bkf} plots above the curve	Project site Q/Q _{bkf} of 2.0 plots above 1.6 for d/ _{dbkf}

How can we use the pyramid? -Application-

Function-Based Assessments

Goals and Objectives

Debit and Credit Determination

Function-Based Assessments Why do we need them?

- Is this stream sick?
- Is the stream moving towards stability or instability?
- Was there functional lift?
- Was this project successful?
- What reaches in the watershed need restoration?

Function Drivers

- Floodplain Connectivity
- Bedform Diversity
- Streambank Erosion (Lateral Stability)
- Riparian Buffer
- Site Selection

Requires

Appropriate Watershed Condition.

Adequate hydrology functions.

Reach scale versus watershed scale understanding.

Caveats

For perennial single thread, meandering, alluvial, riffle-pool dominated stream types.

Bad Goal

Better Habitat Goals

The goal of this project is to improve native brook trout habitat (Levels 1-3).

Even better – The goal of this project is to increase the biomass of native brook trout populations (Levels 1-5).

Quantitative Brook Trout Objectives

- Create pH of 6.5 to 8.0 (Level 4)
- Create water temperature of 11 to 16° C (Level 4)
- Create pool habitat of 40 to 60 percent (Level 3)
- Create 3 to 80 mm diameter substrate for spawning (Level 3)
- Create velocities of 2.8 to 4.3 ft/sec (Level 2)

Key Points

- The Stream Functions Pyramid can be as a tool that managers and practitioners can you to guide their restoration activities
- Restoration activities directly affect Level 2 and 3 Parameters.
 - May occasionally directly affect Level 1.
- Restoration activities along with proper site selection *may* affect Level 4 and 5 Parameters.
- This is a guide to help people think about how functions support each other and how to link restoration approaches with functional lift.
 - It is not a cookbook approach
- Successful watershed restoration results from a variety of restoration activities being implemented within a watershed and at a large enough scale to influence beneficial change.

Acknowledgement

- Funding and technical support was provided by the U.S. Environmental Protection Agency.
- Will Harman, Stream Mechanics.
- Rich Starr, U.S. Fish and Wildlife Service.

U.S. Fish & Wildlife Service Chesapeake Bay Field Office

177 Admiral Cochrane Drive Annapolis, Maryland 21401 www.chesapeakebay.fws.gov

Mark A. Secrist
Division of Habitat Restoration
(410) 573-4551
mark_secrist@fws.gov