# WQSTM Sensitivity Scenarios

Modeling Workgroup Quarterly Review April 26, 2016

Lew Linker, Ping Wang, Richard Tian, and CBPO Modeling Team



#### Overview:

- The motivation:
  - To get an early look at simulated water quality standard sensitivity to nutrient changes.
  - To test scenario operations.
  - To become practiced in scenario operations.
- Done by a proportional change to TN, TP, and TSS loads at land-water-segment, i.e., the same degree of nutrient reduction from the base calibration of the 2010 WQSTM and the current version
- A look at changes in WQSTM nutrient load sensitivity in isolation from any changes in Watershed Model phases.

## Deep Channel DO

|            |       | Phase 5.3.2<br>Calibration | 1985<br>Progress | 2009<br>Progress | 2010<br>TMDL | All<br>Forest | G3 Base<br>Calibration | 1985<br>Progress | 2009<br>Progress | 2010<br>TMDL | All<br>Forest |
|------------|-------|----------------------------|------------------|------------------|--------------|---------------|------------------------|------------------|------------------|--------------|---------------|
| CD C       | Ct. I | 1993_1995                  | 1993_1995        | 1993_1995        | 1993_1995    | 1993_1995     | 1993_1995              | 1993_1995        | 1993_1995        | 1993_1995    | 1993_1995     |
| CB Segment | State | DO - DC                    | DO - DC          | DO - DC          | DO - DC      | DO - DC       | DO - DC                | DO - DC          | DO - DC          | DO - DC      | DO - DC       |
| CB3MH      | MD    | 16%                        | 17%              | 7%               | 0%           | 0%            | 16%                    | 17%              | 11%              | 4%           | 0%            |
| CB4MH      | MD    | 46%                        | 49%              | 25%              | 3%           | 0%            | 46%                    | 47%              | 37%              | 18%          | 0%            |
| CB5MH      | MD/VA | 15%                        | 18%              | 1%               | 0%           | 0%            | 15%                    | 16%              | 8%               | 0%           | 0%            |
| CHSMH      | MD    | 39%                        | 39%              | 34%              | 16%          | 0%            | 39%                    | 39%              | 32%              | 27%          | 0%            |
| POTMH      | MD/VA | 20%                        | 23%              | 0%               | 0%           | 0%            | 20%                    | 20%              | 6%               | 0%           | 0%            |
| POMMH      | MD    | 20%                        | 23%              | 0%               | 0%           | 0%            | 20%                    | 21%              | 6%               | 0%           | 0%            |
| RPPMH      | VA    | 19%                        | 25%              | 0%               | 0%           | 0%            | 19%                    | 20%              | 3%               | 0%           | 0%            |
| EASMH      | MD    | 25%                        | 29%              | 15%              | 3%           | 0%            | 25%                    | 26%              | 21%              | 14%          | 0%            |
| PATMH      | MD    | 25%                        | 42%              | 13%              | 0%           | 0%            | 25%                    | 22%              | 11%              | 0%           | 0%            |



#### **Initial Conclusions:**

- A consistent, systematic loss of sensitivity to nutrient load changes in Deep Channel DO, Deep Water DO, Open Water DO, and in James Chlorophyll water quality standards.
- Loss of nutrient change sensitivity is consistent among all segments and nutrient load changes.
- A possible cause for the loss of nutrient sensitivity are the addition of largely uncontrolled loads of nutrients from tidal shoreline erosion.
- Other causes of a loss of sensitivity to nutrient changes could be due to ocean boundary conditions or to the inclusion of G3 reactivity rates applied to a portion of watershed loads.



## Next Steps:

- Understand reason(s) for decreased sensitivity:
  - Ocean boundary
  - G3 in tidal shore erosion
  - G3 in watershed loads
- Can observed nutrient sensitivity give guidance?
- Examine reactivity rates of G3. A half life of several years would be reasonable and could resolve reduced sensitivity problems.