Impacts of Sea Level Rise on Hypoxia—A Model Intercomparison

Pierre St-Laurent¹, M.A.M. Friedrichs¹

¹Virginia Institute of Marine Science

Modeling WG Quarterly Meeting July 16–17, 2019

Outline

Overview

Physical changes caused by ΔSL

 ΔS

 ΔT

Changes in DO caused by ΔSL

 ΔDO

Impacts of $\Delta S, \Delta T$ on solubility

Mechanisms leading to ΔDO

Linearity of response to ΔSL

Conclusions

Overview

We are investigating the impacts of sea level rise (SLR) on hypoxia using different models of the bay. This intercomparison is motivated by recent studies showing improvements in bottom DO with SLR (e.g., Irby et al. 2018) but also increased hypoxic volume (Ni et al. 2018).

The experiments assume realistic conditions for the period **1991–1995** and use the same riverine forcing (Phase-6 CXXBASE).

We consider four scenarios:

- 1. No SLR: base run / control
- 2. SL raised by 0.17 m at the oceanic model boundary (2025)
- 3. SL +0.50 m (2050)
- 4. SL +1.00 m (2100)

The SL is the only thing that is different between the simulations (e.g., no warming).

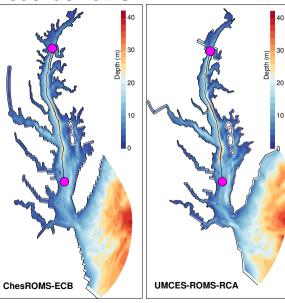
Experiments completed

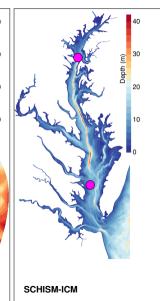
Model CH3D (physics) + ICM (biology):

► +0.17 m 1991–1995 (physics & biology)

Model ChesROMS-ECB:

- ► +0.17 m 1991–1995
- ► +0.50 m 1991–1995
- ► +1.00 m 1991–1995

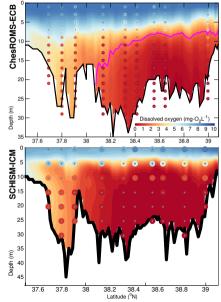

Model UMCES-ROMS (physics) + RCA (biology):

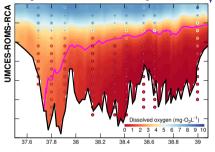

- ► +0.17 m 1991–1995 (physics & biology)
- ► +0.50 m 1991–1995 (physics & biology) **coming soon**
- ► +1.00 m 1991–1995 (physics & biology)

Model SCHISM (physics) + ICM (biology):

- ► +0.17 m 1991–1995 (physics & biology)
- ► +0.50 m 1991–1995 (physics & biology)
- ► +1.00 m 1991–1995 (physics & biology)

Model domains



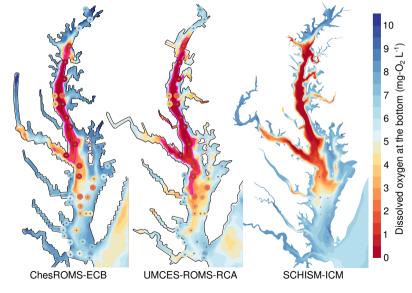

Oceanic boundary of models (SCHISM: extends beyond the continental slope)

"Deep channel" where hypoxia is concentrated.

Transect from Rappahannock River (south) to Chester River (north).

Model evaluations: DO, July 1991–1995 (max hypoxia)

Dissolved oxygen (mg-O₂L⁻¹)
0 1 2 3 4 5 6 7 8 9 10
Contour line: 2 mg L⁻¹
Circles: Data from WOMP


All the models reproduce observations of *S*, *T*,DO reasonably well.

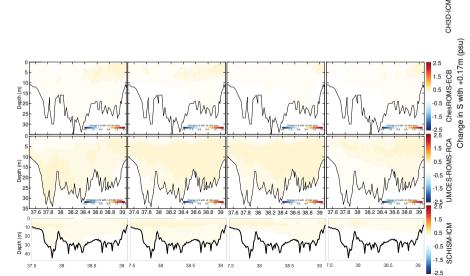
July: Month of max hypoxia, climatology 1991–1995.

ChesROMS-ECB and SCHISM-ICM overestimate DO at 37.8°N.

SCHISM-ICM: Oxycline a bit too high.

Model evaluations: Bottom DO, July 1991–1995 (max hypoxia)

Observed distribution of summer hypoxia reasonably well reproduced.


The three models look very similar.

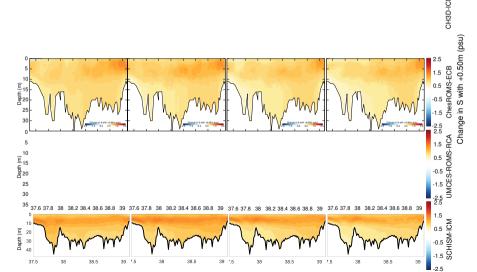
ChesROMS-ECB and SCHISM-ICM overestimate DO south of Rapp. River (same as previous slide). UMCES-ROMS-RCA does a bit better.

Physical changes caused by ΔSL

Change in S from $\triangle SL = +0.17m$

July

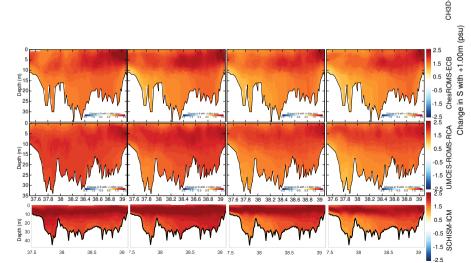
"Depth=0 m" \Leftrightarrow mean sea level in case without ΔSL .


With \triangle SL, the surface goes above the 0 m mark.

For a sea level of +0.17m...

 $\begin{array}{l} \Delta \textit{S} \approx +0.2 \text{--} \\ \text{0.3} \, \text{psu} \end{array}$

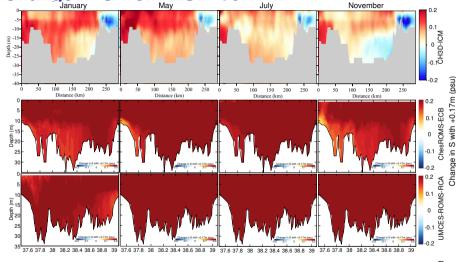
Change in S from \triangle SL=+0.50m \triangle SL=+0.50m


For a sea level of +0.50m...

 $\Delta S \approx +0.7\,\mathrm{psu}$ Hong&Shen 2012: $\Delta S \sim 0.75\,\mathrm{psu}$

 ΔS largest in top 10 m. Halocline shifted \uparrow by ΔSL .

Change in S from $\triangle SL=+1.00m$

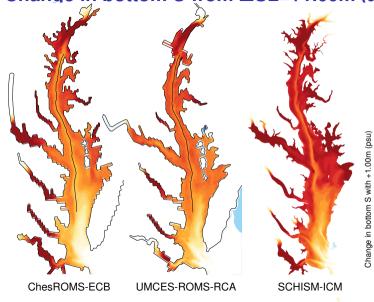


For a sea level of +1.00m...

 $\Delta S \approx +1.5\, \text{psu}$ Hong&Shen 2012: $\Delta S \sim 1.5\, \text{psu}$

 ΔS largest in top 10 m. Halocline shifted \uparrow by ΔSL .

Change in S from \triangle SL=+0.17m


We go back to case +0.17 m to compare with CH3D-ICM:

Narrower scale: $\pm 0.2 \, \text{psu}$ in place of $\pm 2.5 \, \text{psu}$

Slightly different set of months: JanMayJulNov in place of AprMayJunJul.

CH3D-ICM suggests smaller ΔS . 12/46

Change in bottom S from $\triangle SL=+1.00m$ (average 1991–1995)

- A bay-wide perspective on ΔS at the bottom:
- 0.5 Cases +0.17m,+0.50m look similar (just smaller values).
- Larger ΔS in shallow water (\uparrow shift of halocline).
 - Relatively small ΔS on the shelf (white). Key changes are inside the Bay.

Change in S **from** Δ **SL: Summary**

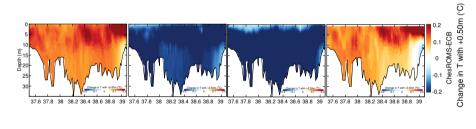
The models agree on:

- $ightharpoonup \Delta S > 0$ everywhere and at all time (except perhaps for CH3D-ICM).
- ▶ No seasonality apparent in $\triangle S$. $\triangle S$ is amplified with SLR.
- ▶ Larger ΔS in upper 10 m. ΔS concentrated inside the Bay.
- $ightharpoonup \Delta S$ values are quantitatively close between models.

Reminder: These results are obtained without a change in S on the continental shelf. The ΔS are consistent with the literature (Hong&Shen 2012).

The models disagree on:

lacktriangle CH3D-ICM suggests lower ΔS ; presumably due to the position of its oceanic boundary.

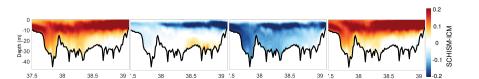

Change in T from \triangle SL=+0.17m November -10-(ii) -15 − Hd -20 − G -25 − -35. 250 150 Distance (km) Distance (km) Distance (km) Distance (km) (m) 15 ©20 40 30 37.5 38.5 39 '.5 38.5 38.5 39 '5

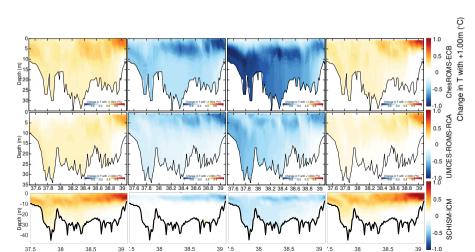
All models show the same seasonal pattern.

Warmer during winter.

Cooler during summer.

SCHISM-ICM: ΔT anomalies not apparent below \sim 20m.




All models show the same seasonal pattern.

Warmer during winter.

Cooler during summer.

Anomalies are **amplified** with SLR.

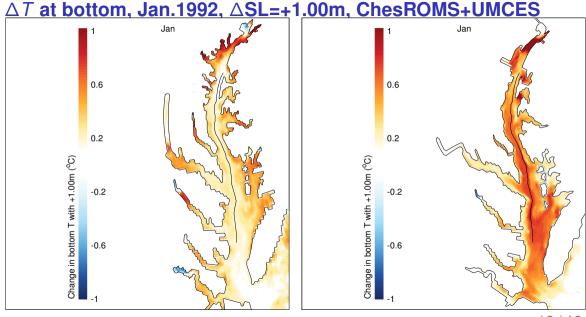
(Change in scale: from $\pm 0.2^{\circ}$ C to $\pm 1.0^{\circ}$ C)

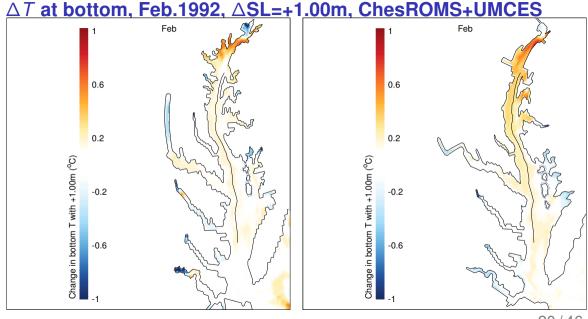
Warmer during winter.

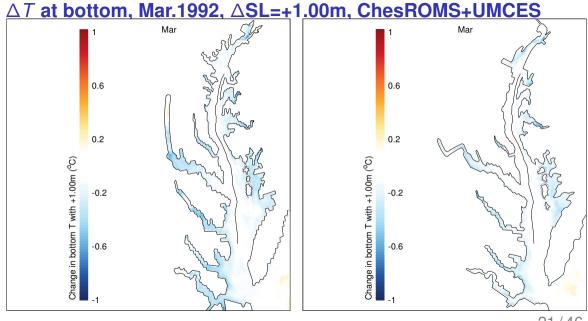
Cooler during summer.

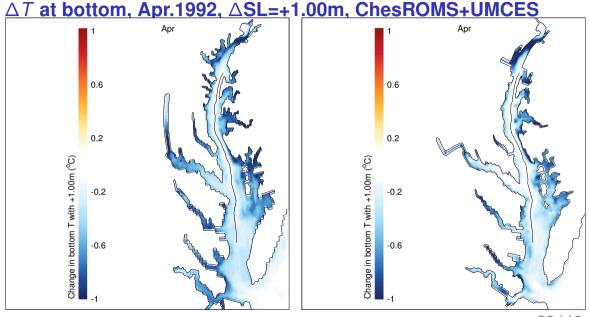
Anomalies are **amplified** with SLR.

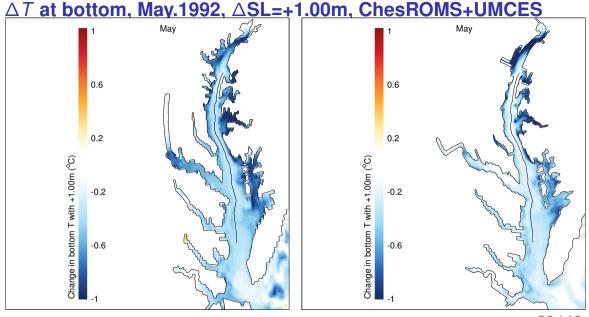
Change in T from \triangle SL: Partial summary 1

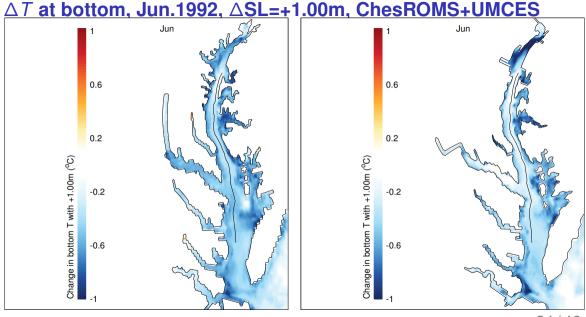

The models agree on:

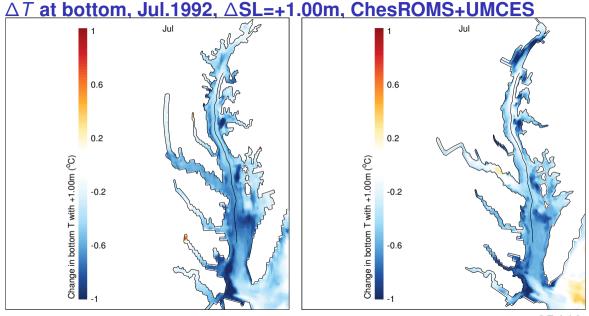

- ▶ The presence of a seasonal pattern: $\Delta T > 0$ in winter, $\Delta T < 0$ in summer.
- ▶ These ΔT anomalies are amplified with SLR.


The models disagree on:

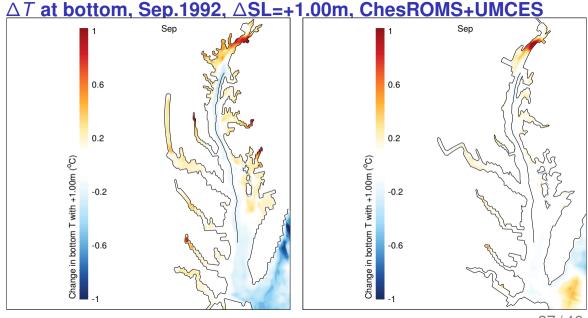

- The precise value of the warming/cooling.
- How deep the warming/cooling anomaly are apparent in the water column (shallower in the case of SCHISM-ICM).

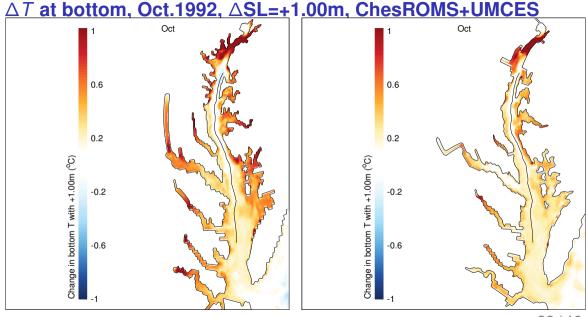

Next slides: A bay-wide perspective on the ΔT anomalies.

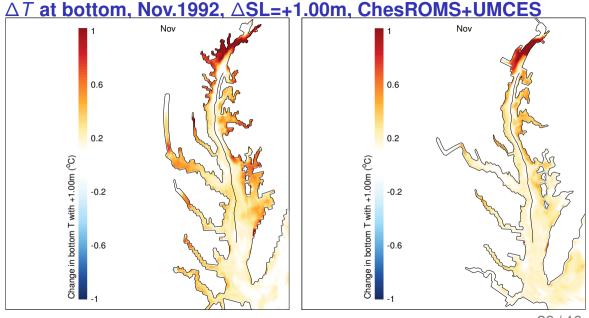


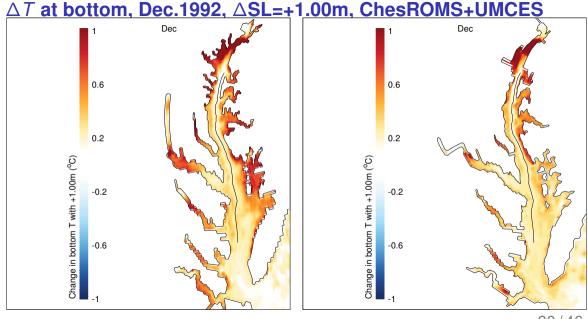












26/40

Change in T from \triangle SL: Partial summary 2

- ▶ The ΔT anomalies appear **throughout the bay** at nearly the same time.
- ▶ They appear **quickly**; ΔT can be ~ 0 (white) in one month and -0.5° C the next month.
- ▶ SL is the only thing that changed between the model simulations.

 The same surface air temperature and the same surface longwave/shortwave fluxes are used in all the model runs.

A **lag** in the vertical diffusion of T is the most likely mechanism: $\partial T/\partial t \approx \partial/\partial z (K \partial T/\partial z)$. As the water column becomes thicker with SLR, it takes longer to cool it (during winter) or to warm it (during summer).

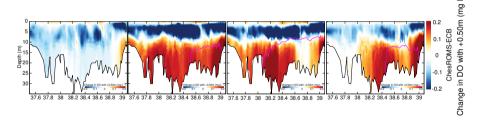
The result is a $\Delta T > 0$ during winter and a $\Delta T < 0$ during summer.

The magnitude of ΔT would ultimately depend on the strength of the stratification and the vertical diffusivity of each model. It can explain the small differences between the models.

Changes in DO caused by ΔSL

Change in DO from $\triangle SL=+0.17m$ September 200 Distance (km) Distance (km) Distance (km) Distance (km) (m) 15 (m) 20 25 **MS-RCA** 10 15 20 20 25 ©20 30 37.5 38 38.5 39 '.5 39 '.5 39 1.5

For a sea level of +0.17m...


Less DO in upper 10m.

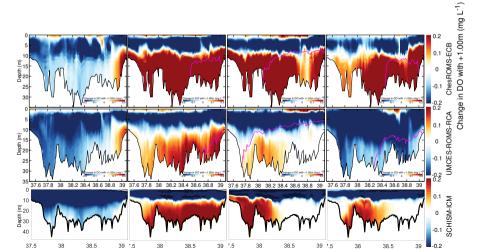
More DO below 10m: CH3D-ICM, ChesROMS-ECB.

UMCES-ROMS-RCA: Mixed response.

SCHISM-ICM: No visible improvement in bottom DO.

September

For a sea level of +0.50m...

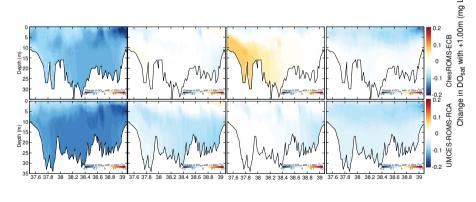

Patterns above/below 10m are amplified.

SCHISM-ICM: **More DO** below 10m.

Change in DO from $\triangle SL=+1.00m$

September

Patterns above/below 10m are amplified.

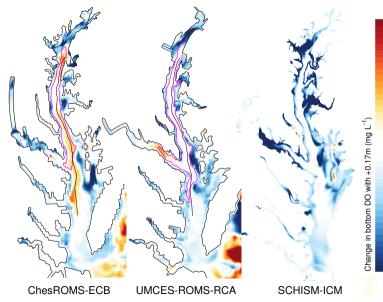

All the models show improvements in bottom DO in May-July.

The DO> 0
persists in
ChesROMS-ECB
and SCHISM-ICM.

UMCES-ROMS-RCA: DO> 0 disappears.

35/46

Change in DO solubility from $\triangle SL = +1.00m$ September


Can $\Delta T, \Delta S$ explain ΔDO ? $T \searrow$, $DO_{sat} \nearrow$ $S \nearrow$, $DO_{sat} \searrow$

In March–July, the two effects offset each other.

DO_{sat} can only explain a small fraction of the improvement in bottom DO.

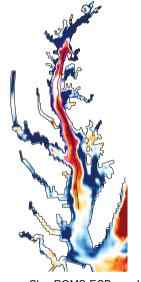
Same outcome for +0.17m, +0.50m.

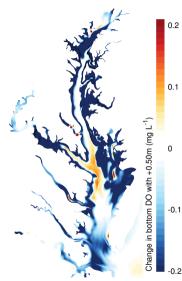
Change in July bottom DO from \triangle SL=+0.17m

For a sea level of +0.17m...

Bottom DO worsens in **shallow water** (depths < 10 m, as in previous slides).

0.2


0.1


-0.1

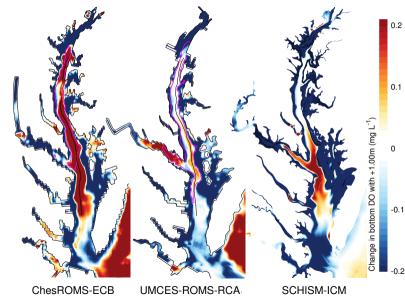
Deep water: Bottom DO shows either little changes (white) or an improvement.

This is the main disagreement between the models.

Change in July bottom DO from \triangle SL=+0.50m

For a sea level of +0.50m...

Bottom DO worsens in **shallow water** (depths < 10 m, as in previous slides).


Deep water: Bottom DO shows either little changes (white) or an improvement.

This is the main disagreement between the models.

UMCES-ROMS-RCA

SCHISM-ICM

Change in July bottom DO from △SL=+1.00m

For a sea level of +1.00m...

Bottom DO worsens in **shallow water** (depths < 10 m, as in previous slides).

Deep water: Bottom DO shows either little changes (white) or an improvement.

This is the main disagreement between the models.

Change in DO from △SL: Partial summary 1

The models agree that:

- ▶ DO generally worsens above 10 m (except CH3D-ICM). This signal is amplified with SLR.
- ▶ DO shows some improvements below 10 m in the deep channel. This signal is amplified with SLR.
- ▶ The changes in S, T, solubility cannot explain the improvement in bottom DO.

The models disagree on:

- ► The **duration** of the improvement in bottom DO:
 - Improvement persists until September in ChesROMS-ECB, SCHISM-ICM, CH3D-ICM. Improvement gradually goes away after May in UMCES-ROMS-RCA.
- ▶ The **magnitude** of the improvement in bottom DO:
 - UMCES-ROMS-RCA < SCHISM-ICM < ChesROMS-ECB < CH3D-ICM

Mechanisms leading to $\triangle DO$ in the deep channel

Although the **shallow regions** (depth 0–10 m) show DO to be worsening with SLR, these regions are relatively well oxygenated (DO > 5 mg L $^{-1}$) and thus less impacted. Multiple processes could cause the worsening of DO in the upper 10 m:

- ► Rising SL implies a ↑ of the pycnocline (and oxycline) relative to the bottom.
- ▶ Slower vertical diffusion due to thicker water column (as for *T*).
- ▶ Lower rates of primary production as a result of cooler *T* during summer.

We have been focusing on the changes in the **deep channel** (where hypoxia is concentrated) to understand:

- what causes the improvement in bottom DO,
- why its magnitude varies between the models.

Mechanisms leading to △DO in the deep channel

One way to look at the question: In the bottom layer of the deep channel,

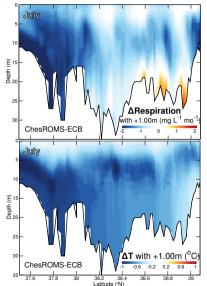
$$\frac{\partial \mathsf{DO}}{\partial t} \approx \mathsf{DO} \, \textit{Transport} - \textit{Respiration}, \tag{1}$$

where "DO Transport" represents the net effect of DO advection/diffusion and is assumed > 0. No "production" in this bottom layer.

During the summer, Respiration > DO Transport, and thus $\partial DO/\partial t < 0$.

An improvement in bottom DO implies that $\partial DO/\partial t$ is *less negative* with SLR.

This happens if there is: (Eq. 1)


- More DO Transport,
- Less Respiration.

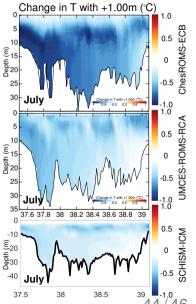
Mechanisms leading to △DO in the deep channel

We find in ChesROMS-ECB that:

- Less Respiration is the cause of the improvement in bottom DO within the deep channel.
- ► The improvement is not caused by an increase in "DO Transport".

Not surprising: Respiration rates depend on T, and T is lower during summer with ΔSL .

Mechanisms leading to $\triangle DO$ in the deep channel


What about the differences between the models?

ChesROMS-ECB suggests a stronger cooling during the summer:

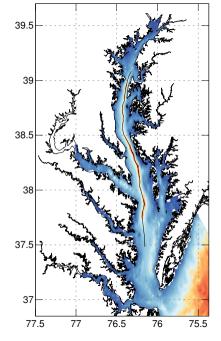
 $\Delta T \approx -0.9^{\circ} \text{C vs. } \Delta T \approx -0.5^{\circ} \text{C (case } \Delta \text{SL=+1.00m)}$

(Consistent with ChesROMS-ECB showing a larger improvement in bottom DO.)

Is ΔT determining the magnitude and duration of the DO improvement in the different models? This is being tested in UMCES-ROMS-RCA and SCHISM-ICM.

Linearity of response to △SL

Changes in the bottom layer of station CB5.2 (deep channel, just north of Potomac River):

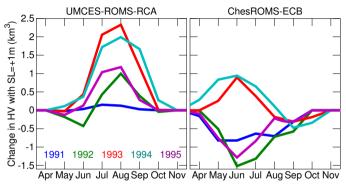

- ► *S* ≯, *T* ∖, DO ≯
- Changes are very close to being linear with ΔSL.

Summary

Summary

- 1. All models reproduce the observed summer DO reasonably well.
- 2. There is considerable agreement in how SLR affects S, T (models are quantitatively close).
- All models show some improvement in the bottom DO of deep channel. Models disagree in the magnitude/duration of this improvement: UMCES-ROMS-RCA < SCHISM-ICM < ChesROMS-ECB < CH3D-ICM
- 4. Solubility cannot explain the improvements in bottom DO: ΔS offsets ΔT .
- 5. DO worsens in the upper \sim 10 m of the water column but the changes are relatively smaller.
- 6. Summer cooling and decreased respiration cause the improvement in ChesROMS-ECB.
- 7. We are testing quantitatively whether differences in ΔT among models are the cause of the disagreement in the magnitude/duration of DO improvements.
- 8. Changes in S, T, DO are \approx linear with ΔSL .

Appendix


Position of the transect used in the figures:

Change in hypoxic volumes (DO< 2mg L⁻¹) with \triangle SL = +1.00m

Although all 3 models show some improvement in bottom DO with $\Delta SL=+1.00m$, the improvement is:

- much smaller in UMCES-ROMS-RCA,
- ► mostly in ~May.

Particularly apparent when plotting the ΔHV (whole bay):

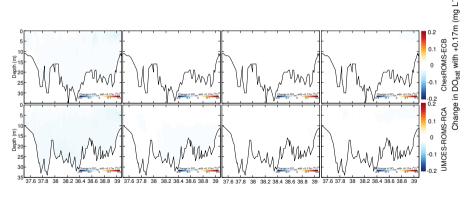
UMCES-ROMS-RCA: The improvement is limited to \sim May–June and limited to 2 out of the 5 years. HV is worse over the rest of the summer.

We saw earlier that the 2 mg L^{-1} contour line extends into the upper 10 m, where DO worsens with ΔSL . This is particularly the case with UMCES-ROMS-RCA.

Impacts of $\Delta S, \Delta T$ on DO solubility (case +0.17 m)

Could ΔT , ΔS contribute to the ΔDO through solubility?

Bottom layer of main stem in July: $T\sim 24^{\circ}\text{C}$, $S\sim 21$ psu $\Delta \text{SL}=+0.17$ m causes $\Delta T\sim -0.1^{\circ}\text{C}$, $\Delta S\sim +0.3$ psu

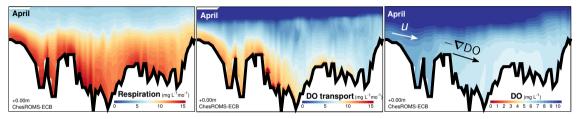

$${
m DO_{sat}}(T,S) = 7.465~{
m mg}~{
m L}^{-1} \ {
m DO_{sat}}(T+\Delta T,S) = 7.478~{
m mg}~{
m L}^{-1} \ {
m DO_{sat}}(T,S+\Delta S) = 7.452~{
m mg}~{
m L}^{-1}$$

Changes in T,S offset each other (mostly). ΔDO_{sat} is much smaller than the ΔDO seen in previous slides.

Solubility alone would not explain the Δ DO. Note, however, that this conclusion would likely change if other climate changes (e.g., a long term increases in water temperature) would be taken into account. These model runs only include SLR.

Change in DO_{sat} from \triangle SL=+0.17m

September


Can $\Delta T, \Delta S$ explain ΔDO ? $T \searrow$, $DO_{sat} \nearrow$ $S \nearrow$, $DO_{sat} \searrow$

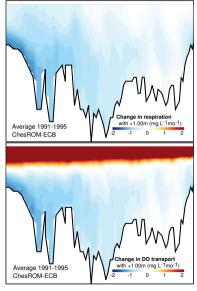
The two effects largely offset each other.
Compare figures with the actual ΔDO calculated by the model.

DO_{sat} cannot explain the improvement in bottom DO.

Example of Respiration, DO Transport (April 1991-1995)

Bottom layer: $\partial DO/\partial t \approx DO$ *Transport* - *Respiration*

Respiration > Transport, so bottom DO is decreasing during this month.


Interpreting the Transport term:

Recall that advection is $\mathbf{u} \cdot (-\nabla DO)$, a 'source' when the two are aligned.

Inside bottom layer, $-\nabla DO$ is \rightarrow , a combination of respiration and age of water (Du&Shen 2015). Spatial pattern and magnitude of 'transport' is largely influenced by ∇DO .

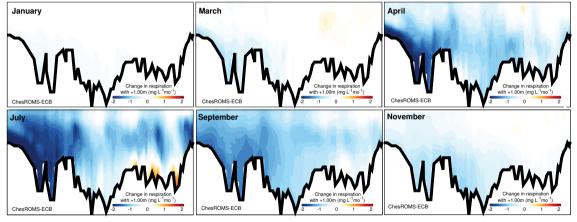
← now if we go back to the previous slide...

Change in Respiration, DO Transport due to △SL=+1.00 m

Top:

Less respiration with ΔSL , consistent with the improvement in bottom DO.

Bottom:


Less DO transport in bottom layer. DO Transport cannot explain the improvement in bottom DO.

How is DO Transport smaller with \triangle SL? The bottom circulation (u, slide 15) is unlikely to have slowed down.

However, advection depends on ∇DO (slide 13), and ∇DO decreases when the respiration decreases.

(The dark red anomaly at the top of the figure represents changes in $\partial DO/\partial z$ and vertical diffusion)

Change in Respiration due to △SL=+1.00 m (ChesROMS-ECB)

The seasonal cycle and spatial distribution of Δ Respiration are consistent with the ΔT .