
QUARTERLY PROGRESS MEETING – August 2020 Chesapeake Bay Program

Through the Chesapeake Bay Watershed Agreement, the Chesapeake Bay Program has committed to...

Outcome:

- CONTINUALLY INCREASE OUR UNDERSTANDING OF THE IMPACTS AND MITIGATION OPTIONS FOR TOXIC CONTAMINANTS.
- DEVELOP A RESEARCH AGENDA AND FURTHER CHARACTERIZE THE OCCURRENCE, CONCENTRATIONS, SOURCES AND EFFECTS OF MERCURY, POLYCHLORINATED BIPHENYLS (PCBS) AND OTHER CONTAMINANTS OF EMERGING AND WIDESPREAD CONCERN.
- IN ADDITION, IDENTIFY WHICH BEST MANAGEMENT PRACTICES MIGHT PROVIDE MULTIPLE BENEFITS OF REDUCING NUTRIENT AND SEDIMENT POLLUTION AS WELL AS TOXIC CONTAMINANTS IN WATERWAYS.

MANAGEMENT APPROACHES FOR RESEARCH OUTCOME

MA1: Supply information to make fish and shellfish safe for human consumption

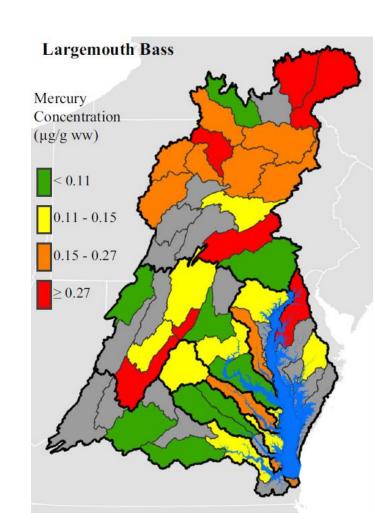
MA2: Understanding the influence of contaminants in degrading the health, and contributing to mortality, of fish and wildlife

MA3: Document the occurrence, concentrations, and sources of contaminants in different landscape settings

MA4: Science to help prioritize options for mitigation to inform policy and prevention

MA5: Gather information on issues of emerging concern

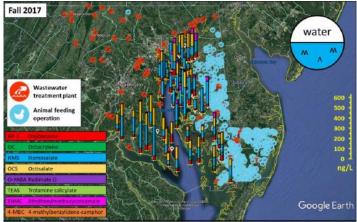
- Further characterize the occurrence, concentrations, sources and effects of mercury, PCBs and other contaminants— Good
- Identify which BMPs might provide multiple benefits of reducing nutrient and sediment pollution as well as toxic contaminants – Fair



- •Science:
- Existing studies to reduce PCBs
- Mercury and EDC findings
- PFAS and microplastics toxicity
- Policy: Mercury Emissions, PFAS thresholds, Microplastics regulations
- •Fiscal: COVID-19 impacts

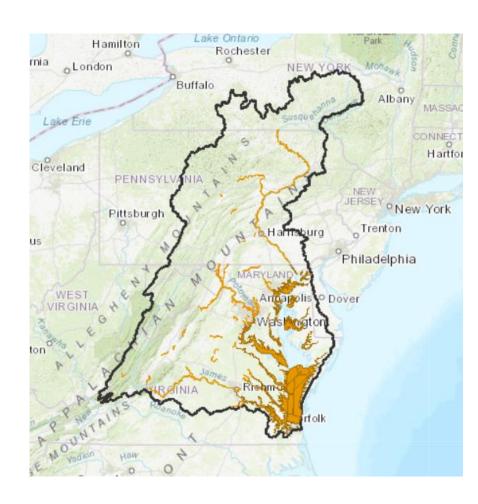
Learn and adapt: MA1

- •Mercury widespread in freshwater fish
- Mercury concentrations in fish not consistent with air deposition
- Difficult to assess trends since no watershed-wide network
- Mercury Opportunity for integrated monitoring
- Move PCB science from Policy and Prevention



Learn and adapt: Effects on fish and wildlife (MA2)

- Fish health issues in urban and ag areas.
- Still lack connection with state wildlife agencies
- Complete and communicate EDC studies
- PFAS- Occurrence and effects on fish and wildlife



Learn and adapt: Sources and Occurrence (MA3)

- •STAC workshop helped with occurrence in urban and ag settings
- GIT project on WWTP
- Difficult to do regional analysis
- Contaminants in targeted areas and co-occurrence with nutrients
- Wastewater and urban areas
- Select ag settings
- PFAS: sources and occurrence

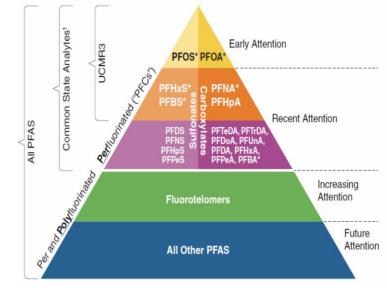


Learn and Adapt: Cobenefits of BMPs (MA4)

- STAC workshop and report
 Lack of removal efficiencies so limited applications for nutrient and sediment reduction in CBP tools
- •GIT proposal: approaches for urban toxic contaminants into CB decision tools
- CBP responses to STAC report

Proposed CBP responses:

- Enhance interaction with stakeholders for contaminant information
- Take advantage of Phase 3 implementation/2-year milestones
- Enhance communication materials to inform decisions
- ^aCompile results and expand BMP studies of contaminant mitigation and relation to nutrients and sediment reductions.
- •Include selected BMP results into CBP tools


Learn and Adapt: issues of emerging concern (MA₅)

Knowledge transfer – 6 emerging issues, PFAS prioritization

Microplastics workshop planning and execution

Too many emerging issues

 Support the microplastics action team, limit focus on other issues

QUARTERLY PROGRESS MEETING Chesapeake Bay Program

Discussion

Contacts:

Emily Majcher emajcher@usgs.gov Scott Phillips swphilli@usgs.gov