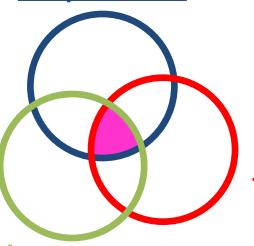
Synthesis Element 1

Water Temperature Effects on Fisheries and Stream Health in Non-Tidal

Waters

Contributors: Steve Faulkner, USGS; Frank Borsuk, EPA; Kevin Krause, USGS; Rosemary Fanelli, USGS; Matthew Cashman, USGS; Than Hitt, USGS; Greg Pond, EPA; Benjamin Letcher USGS;


- Identify knowledge gaps, missing resources, and develop recommendations to mitigate detrimental impacts.
- Overview information
- Key findings
- Discussion Questions

Conceptual model to assess effects of rising water temperatures on aquatic organisms

Where will temperatures increase and by how much?

Exposure

Which populations will respond?

Sensitivity

Adaptive capacity

Will evolutionary change enable persistence?

Adapted from Foden et al. 2013. PLOS One

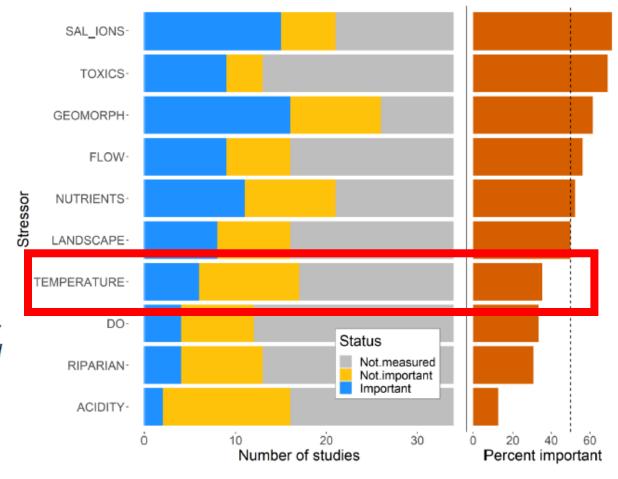
Approach

- Initial literature review (not comprehensive)
- Expert Opinion
 - Questionnaire
 - **Arm-twisting**

EPA 841-R-19-001 | December 2020

National Rivers and Streams Assessment 2013-2014:

A Collaborative Survey



Key Findings - Fish

Lit review analysis results

- Number of studies that measured the stressor
- Number of studies that reported the stressor as important
- Percent of studies that measured the stressor <u>and</u> reported it as important based on their statistical analysis

Note: each study is weighed equally; may not reflect differences in study design and environmental conditions (# sites or presence of other stressors)

Provisional results, for feedback only

Fanelli, Cashman, Porter, in prep

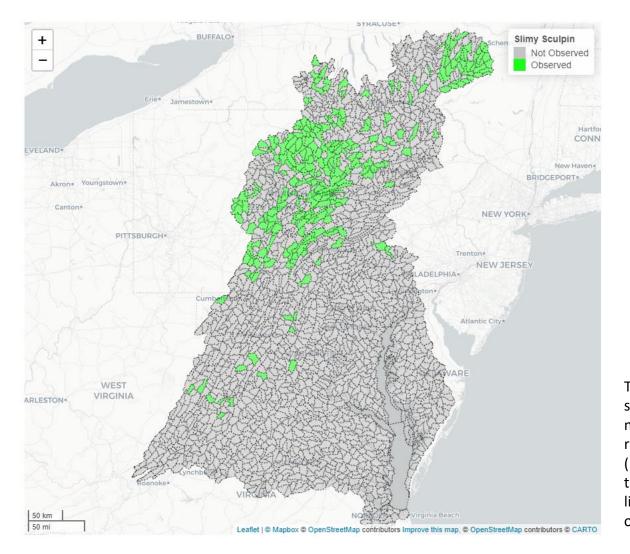
Key Findings - Fish

U.S. Environmental Protection Agency. 2020. National Aquatic Resource Surveys. National Rivers and Streams Assessment 2013–2014.

COM_NAME	TEMP_NRSA	COM_NAME	TEMP_NRSA	COM_NAME	TEMP_NRSA
SLIMY SCULPIN	CD	SHIELD DARTER	CL	SHORTHEAD REDHORSE	CL
BROWN TROUT	CD	ROSYFACE SHINER	CL	POTOMAC SCULPIN	CL
BROOK TROUT	CD	MOTTLED SCULPIN	CL	BLUE RIDGE SCULPIN	CL
RAINBOW TROUT	CD	RAINBOW DARTER	CL	REDSIDE DACE	CL
BURBOT	CD	LOGPERCH	CL	CHAIN PICKEREL	CL
CUTTHROAT TROUT	CD	FANTAIL DARTER	CL	SWALLOWTAIL SHINER	CL
LONGNOSE SUCKER	CD	TONGUETIED MINNOW	CL	ALLEGHENY PEARL DACE	CL
ATLANTIC SALMON	CD	LONGHEAD DARTER	CL	STONECAT	CL
E. BLACKNOSE DACE	CL	BLACKSIDE DARTER	CL	BLACKNOSE SHINER	CL
CREEK CHUB	CL	W. BLACKNOSE DACE	CL	BROOK STICKLEBACK	CL
GREENSIDE DARTER	CL	VARIEGATE DARTER	CL	AMERICAN EEL	CL
LONGNOSE DACE	CL	BANDED DARTER	CL	YELLOW PERCH	CL
WHITE SUCKER	CL	SILVER SHINER	CL	BANDED KILLIFISH	CL
COMMON SHINER	CL	MIMIC SHINER	CL	WALLEYE	CL
CUTLIPS MINNOW	CL	FALLFISH	CL	MUSKELLUNGE	CL
TESSELLATED DARTER	CL	COMELY SHINER	CL	SEA LAMPREY	CL
SMALLMOUTH BASS	CL	SPOTFIN SHINER	CL	NORTHERN PIKE	CL
RIVER CHUB	CL	SPOTTAIL SHINER	CL	AMERICAN SHAD	CL
NORTHERN HOG SUCKER	CL	REDBREAST SUNFISH	CL	EMERALD SHINER	CL

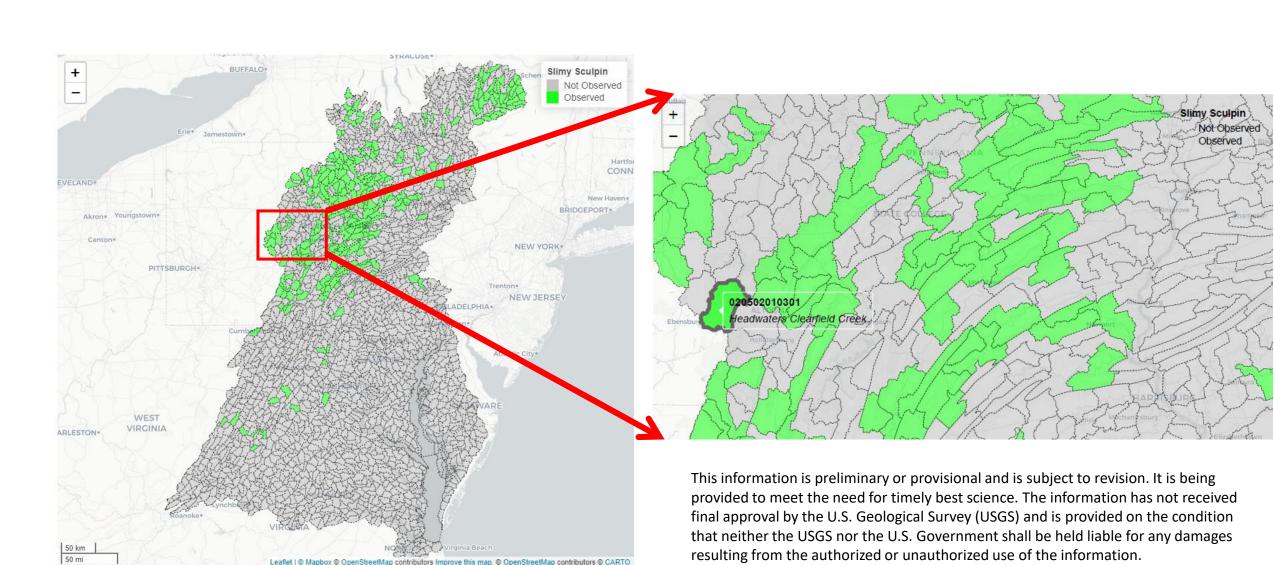
Key Findings - Fish

U.S. Environmental Protection Agency. 2020. National Aquatic Resource Surveys. National Rivers and Streams Assessment 2013–2014.

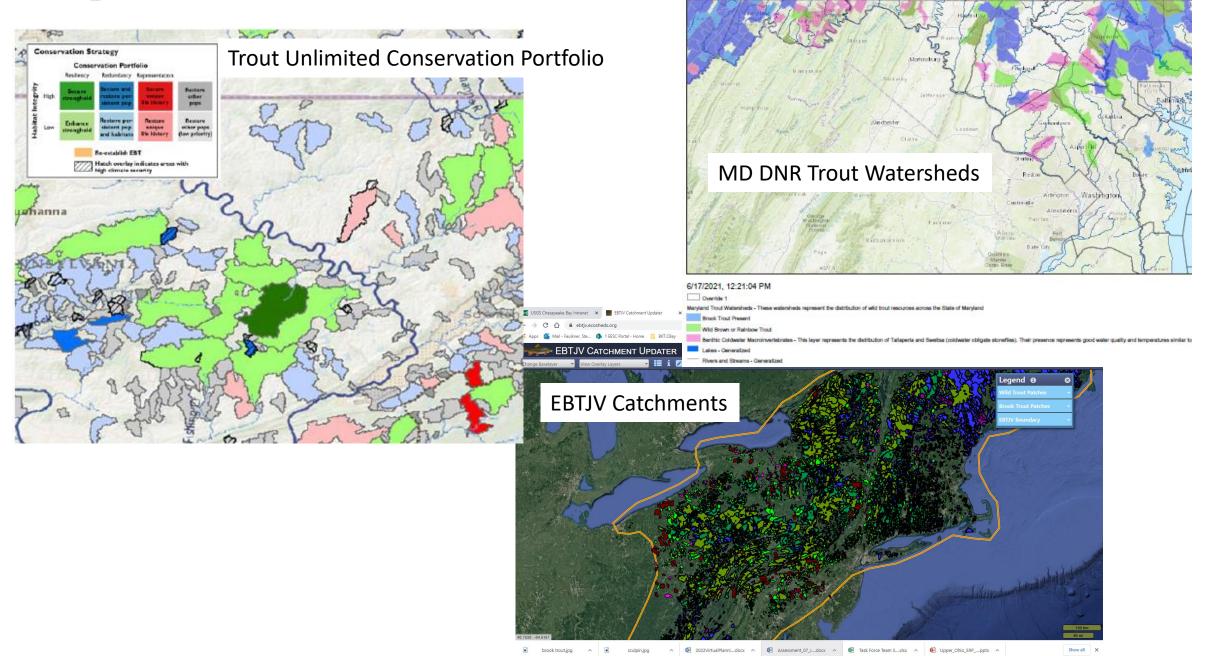

COM NAME	TEMP NRSA	COM_NAME	TEMP_NRSA	COM_NAME	TEMP_NRSA
SLIMY SCULPIN	CD	SHIELD DARTER	CL	SHORTHEAD REDHORSE	CL
BROWN TROUT	CD	ROSYFACE SHINER	CL	POTOMAC SCULPIN	CL
BROOK TROUT	CD	MOTTLED SCULPIN	CL	BLUE RIDGE SCULPIN	CL
RAINBOW TROUT	CD	RAINBOW DARTER	CL	REDSIDE DACE	CL
BURBOT	CD	LOGPERCH	CL	CHAIN PICKEREL	CL
CUTTHROAT TROUT	CD	FANTAIL DARTER	CL	SWALLOWTAIL SHINER	CL
LONGNOSE SUCKER	CD	TONGUETIED MINNOW	CL	ALLEGHENY PEARL DACE	CL
ATLANTIC SALMON	CD	LONGHEAD DARTER	CL	STONECAT	CL
E. BLACKNOSE DACE	CL	BLACKSIDE DARTER	CL	BLACKNOSE SHINER	CL
CREEK CHUB	CL	W. BLACKNOSE DACE	CL	BROOK STICKLEBACK	CL
GREENSIDE DARTER	CL	VARIEGATE DARTER	CL	AMERICAN EEL	CL
LONGNOSE DACE	CL	BANDED DARTER	CL	YELLOW PERCH	CL
WHITE SUCKER	CL	SILVER SHINER	CL	BANDED KILLIFISH	CL
COMMON SHINER	CL	MIMIC SHINER	CL	WALLEYE	CL
CUTLIPS MINNOW	CL	FALLFISH	CL	MUSKELLUNGE	CL
TESSELLATED DARTER	CL	COMELY SHINER	CL	SEA LAMPREY	CL
SMALLMOUTH BASS	CL	SPOTFIN SHINER	CL	NORTHERN PIKE	CL
RIVER CHUB	CL	SPOTTAIL SHINER	CL	AMERICAN SHAD	CL
NORTHERN HOG SUCKER	CL	REDBREAST SUNFISH	CL	EMERALD SHINER	CL

Key Findings – Fish

- For most species, general categorical data, little quantitative
- Further Exploration
 - Metrics Critical thermal maxima (CTM) vs. more relevant ecological attributes
 - Both physiological stress and competitive stress increase with higher temps
 - Life stage warmer water may help spawning/fry of coldwater species
 - Indirect Effects/Interactions Loss of more sensitive prey species reduces predator population


Geospatial Data – Fish Occurrence Maps

Slimy Sculpin



This information is preliminary or provisional and is subject to revision. It is being provided to meet the need for timely best science. The information has not received final approval by the U.S. Geological Survey (USGS) and is provided on the condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

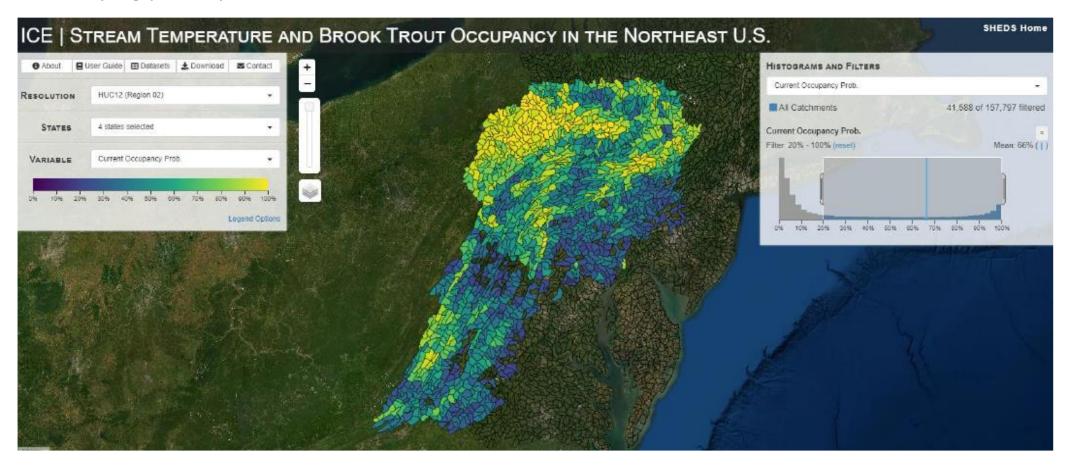
Geospatial Data – Fish Occurrence Maps

Geospatial Data – Brook Trout

Geospatial Data – Stream Temperature, Brook Trout Occupancy

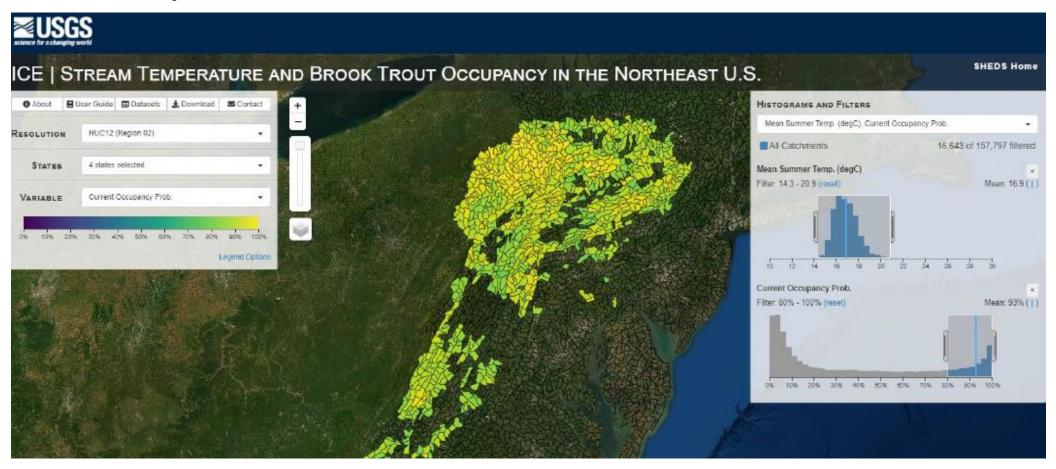
https://ecosheds.org/models/stream-temperature/latest/

Bayesian model predicts daily stream temperature based on catchment characteristics and climate conditions

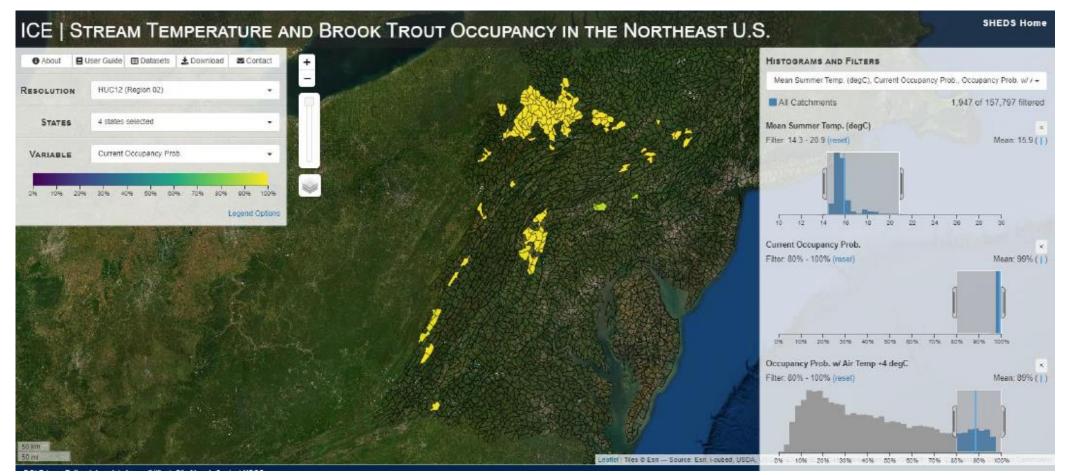

Variable	Description
intercept	Intercept
AreaSqKM	Total Drainage Area (km2)
impoundArea	Impounded Drainage Area (km2)
agriculture	Agricultural Land Cover (%)
devel_hi	High Development Land Cover (%)
forest	Riparian (200 ft Buffer) Forest Cover (%)
prcp2	2-day Precipitation (mm)
prcp30	30-day Precipitation (mm)

Letcher, et al. 2016. "A Hierarchical Model of Daily Stream Temperature Using Air-Water Temperature Synchronization, Autocorrelation, and Time Lags." *PeerJ* 4: e1727. https://doi.org/10.7717/peerj.1727.

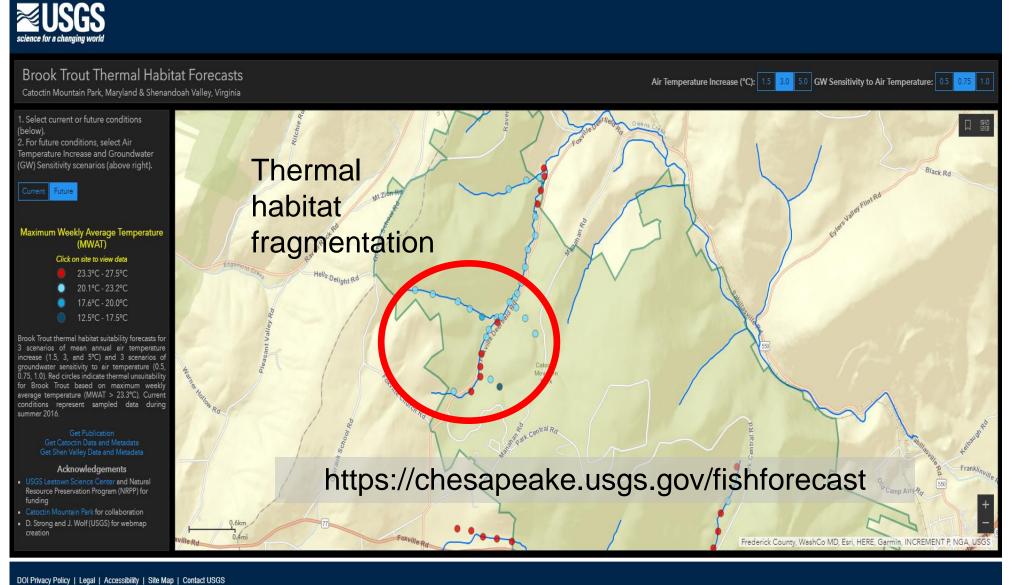
Interactive Catchment Explorer (ICE)


www.usgs.gov/apps/ecosheds/ice-northeast

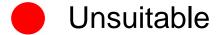
ICE is a dynamic visualization tool for exploring catchment characteristics, model predictions, and identifying priority catchments


Interactive Catchment Explorer (ICE)

Catchments in MD, PA, WV, VA with 80-100% Occupancy Probability



Interactive Catchment Explorer (ICE)


Occupancy Probability with +4 °C Air Temperature

Accounting for groundwater effects on brook trout habitat

Key Findings - Macroinvertebrates/Mussels

- Recent findings suggest that many freshwater mussel species in the southeastern United States are already living close to their upper thermal tolerances (Kwak 2012).
- A need exists to develop a strategy to obtain and classify the thermal tolerance information on the resident freshwater mussels within the Chesapeake Bay watershed as this information is currently limited.
- Recent findings suggest that the thermal tolerance information on the benthic
 macroinvertebrates is limited and unknown. Currently, the benthic
 macroinvertebrate are broadly classified in coldwater, coolwater and warmwater
 categories. However, these classifications are limited due to it being based on
 Genus-level identification data.
- Need to develop a strategy to obtain and classify the thermal tolerance information on the resident freshwater benthic macroinvertebrates within the Chesapeake Bay watershed as this information is currently limited. Relevant literature on the topic includes Poff et al (2006), Vieira et al. (2006) and Fritz et al (2020).

Many Approaches to Vulnerability Assessment

Climate Vulnerability Assessment Process

1. Scoping and Planning

- · Define Study Area
- · Identify Species to Include
- · Define Climate Exposure Factors
- · Define Sensitivity Attributes
- Identify Participants

2. Assessment Preparation

- · Species Profiles
- · Climate Projections
- · Species Distributions

3. Scoring

- · Climate Exposure
- · Sensitivity Attributes
- · Expert Certainty
- · Directional Effect
- Data Quality

4. Analyses

- · Estimate of Overall Vulnerability
- · Certainty in Vulnerability
- · Potential for Distribution Shift
- Importance of Climate Exposure Factors and Sensitivity Attributes
- · Functional Group Evaluation
- Species Narratives

Hare JA, Morrison WE, Nelson MW, Stachura MM, Teeters EJ, et al. (2016) A Vulnerability Assessment of Fish and Invertebrates to Climate Change on the Northeast U.S. Continental Shelf. PLOS ONE 11(2): e0146756. https://doi.org/10.1371/journal.pone.0146756 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146756

Mentimeter Discussion Questions

How should we prioritize our efforts (rank in order of higher to lower preference)?

- a. Fill knowledge gaps (e.g., better understanding of temperature sensitivities) to identify at-risk species/habitats
- b. Identify most effective mitigation actions/strategies
- c. Pursue both a and b simultaneously