Stream Health Outcome

Chesapeake Basin-wide Index of Biotic Integrity ("Chessie BIBI") for Streams

Claire Buchanan

Interstate Commission on the Potomac River Basin

CBP Habitat Goal Implementation Team October 14, 2015 meeting

CBP Joint Meeting of IMNW and ITAT November 17, 2015

Teamwork

2006-2007 (Potomac) 2008 – 2013 (Chesapeake)

2015-2016 (Chesapeake)

LeAnne Astin

Jackie Johnson

Andrea Nagel

Claire Buchanan

Adam Griggs

Zachary Smith

Katie Foreman

Mike Mallonee

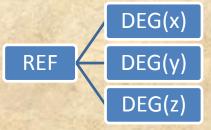
Andrea Nagel

Claire Buchanan

Claire Buchanan

Technical Advisory Group

Technical Advisory Group


→ Stream Health Outcome Management Strategy
Management Approach 1, #1

1) Updated database

- Water quality, habitat scores, and macroinvertebrate counts
- Recent federal, state and county data sets
- Enter into CBP dBase structure
- Attributes (e.g., ecoregion, site type, Strahler order)
- Quality assure and document
- Merge with established dBase

- → Stream Health Outcome Management Strategy
 Management Approach 1, #1
- 1) Updated database
- 2) Biological metric and index calculations
 - Taxonomic names and TSN numbers
 - Attribute tables (feeding guild, tolerance scores, exclusions)
 - R-scripts for over 50 metrics and Chessie BIBI
 - NEXT STEPS: Enable data providers
 - Encourage use of a common dBase structure
 - Share attribute information
 - Perform calculations of state indices

- → Stream Health Outcome Management Strategy
 Management Approach 1, #1
- 1) Updated database
- 2) Biological metric and index calculations
- 3) Index sensitivity and refinement
 - Improve definitions of Reference and Degraded conditions
 - Subdivide/consolidate ecoregion classifications?
 - Re-test discrimination and classification efficiencies
 - Identify metrics sensitive to specific pollutants
 - Compare with state ratings

- → Stream Health Outcome Management Strategy
 Management Approach 1, #1
- 1) Updated database
- 2) Biological metric and index calculations
- 3) Index sensitivity and refinement
- 4) Under-representation
 - North Central Appalachian (NCA) and Northern Appalachian
 Plateau and Uplands (NAPU) ecoregions
 - Local and county data sets

- → Stream Health Outcome Management Strategy
 Management Approach 1, #1
- 1) Updated database
- 2) Biological metric and index calculations
- 3) Index sensitivity and refinement
- 4) Under-representation
- 5) Genus-level metrics

Final Report expected September 2016

Establish 2008 Baseline and Trend Approach

→ Stream Health Outcome Management Strategy
Management Approach 1, #2

Outcome:

Continually improve stream health and function throughout the watershed. Improve health and function of 10 percent of stream miles above the 2008 baseline for the Chesapeake Bay watershed.

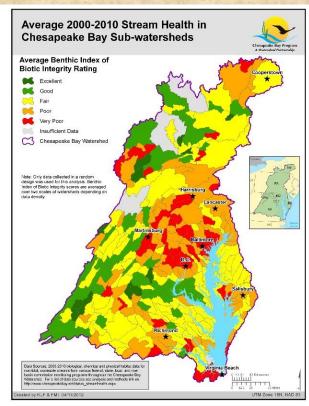
Establish 2008 Baseline and Trend Approach

- → Stream Health Outcome Management Strategy Management Approach 1, #2
- 1) 2008 Baseline
- 2) Trends

Will be done in conjunction with **Technical Advisory Group**

Results will be included in September 2016 Final Report

	1 1	2015				V.	2016														
Activity	Jan	Feb	Mar	Apr	May	Jun	In	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Update Database (#1)												00					118				
Metric and Index Calculations (#2)					での子																
Index Sensitivity (#3)																					
Bioregion Under- Representation (#4)					The state of												V.				Carlos Carlos
Genus-level metrics (#5)																					
2008 Baseline												100									
Trends (Measure Change)																					
Confer with TAG																					
Draft and Final Reports																					

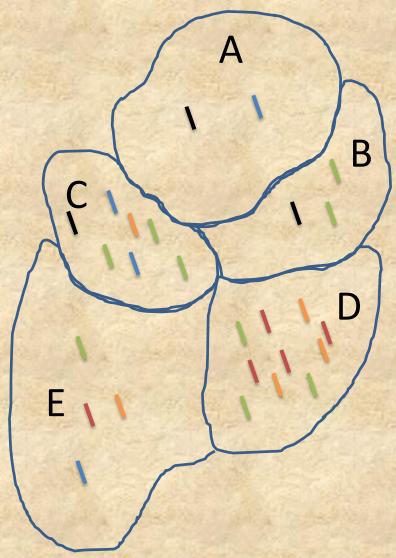

Q: How to report stream health for an entire region? Measure change?

"Figures often beguile me, particularly when I have the arranging of them myself; in which case the remark attributed to Disraeli would often apply with justice and force: 'There are three kinds of lies: lies, damned lies, and statistics.'"

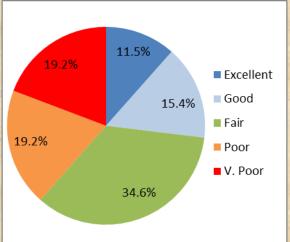
Mark Twain (1906) from *Chapters From My Autobiography*

Basin-wide 2000 - 2010

Q: How to report stream health for an entire region? Measure change?


Station Rankings Excellent B Good Fair Poor Very Poor

Hypothetical data set


- Samples from 26 randomstratified sites collected in 5 hypothetical watersheds (A-E) to represent entire region
- Overlapping monitoring programs collect the data
- Watersheds C and D have small areas but lots of samples. Watersheds A and E are larger but each only has a few samples
- Stream density differs in watersheds

Example C

Simple summation - current CBP pie chart method

Watershed	Watershed area	# Excellent	# Good	# Fair	# Poor	# V. Poor
Α	100	1	1			
В	75	1		2		
С	70	1	2	3	1	
D	80			3	3	4
Е	140		1	1	1	1
SUM		3	4	9	5	5
%		11.5%	15.4%	34.6%	19.2%	19.2%

Conclusion:

38.5% of <u>stream</u> <u>sites</u> are Poor or Very Poor

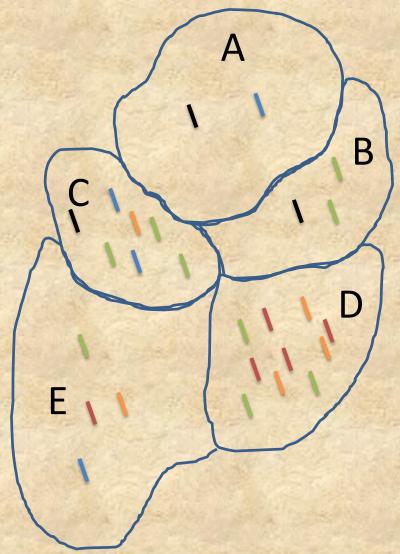
61.5% are Fair or better

Example B

Area-weighting by watershed area using the **average** score – current

CBP mapping approach B

Watershed	Watershed area	% of total area	Average BIBI score	Ranking	Avg Score x Area
Α	100	21.5%	71	Excellent	7100
В	75	16.1%	54	Good	4050
С	70	15.1%	49	Fair	2030
D	80	17.2%	22	Poor	1760
E	140	30.1%	33	Fair	4620
SUM	465	100%			19630



Conclusion:


has an <u>average score</u> of Poor; none are V. Poor **82.8%** has an average score of Fair or better Area-weight average for region is **45.1%** (Fair)

Example A

Weighting by stream miles using proportions of scores

Watershed	Tot # Stream Miles	# Excellent	# Good	# Fair	# Poor	# V. Poor
Α	159	1	1			
В	98	1		2		
С	83	1	2	3	1	
D	102			3	3	4
Е	240		1	1	1	1
SUM	682	18.2%	28.1%	23.9%	15.0%	14.8%

Conclusion:

29.8% of <u>stream miles</u> are Poor or V. Poor

60.2% are Fair or better

Mile-weighted average score for region is **45.2%** (Fair)

Question being addressed:	"Poor" or "Very Poor"	"Fair" or better
C. How many <i>monitoring sites</i> are?	38.5%	61.5%
B. How much <i>area</i> of an entire region has an <i>average</i> condition of?	17.2%	82.8%
A. How many <i>stream miles</i> in the entire region are probably?	29.8%	70.2%

- 1. You are stuck with the data you have...
- 2. The choice of statistic -- and how that statistic is calculated -- will reflect the underlying question. Be sure of the underlying question.

Example data

					Stream miles	
	a	a a			represented by	o 5
Watershed	Station	Station Score	_			Station Rating
Α	1	66	71			Good
Α	2	76	71			Excellent
В	3	35	54			Fair
В	4	42	54	98	32.667	Fair
В	5	85	54	98	32.667	Excellent
С	6	70	49	83	11.857	Excellent
С	7	55	49	83	11.857	Good
С	8	55	49	83	11.857	Good
С	9	46	49	83	11.857	Fair
С	10	45	49	83	11.857	Fair
С	11	49	49	83	11.857	Fair
С	12	23	49	83	11.857	Poor
D	13	39	22	102	10.2	Fair
D	14	40	22	102	10.2	Fair
D	15	32	22	102	10.2	Fair
D	16	20	22	102	10.2	Poor
D	17	24	22	102	10.2	Poor
D	18	29	22	102	10.2	Poor
D	19	8	22	102	10.2	V.Poor
D	20	10	22	102	10.2	V.Poor
D	21	4	22	102	10.2	V.Poor
D	22	14	22	102	10.2	V.Poor
Е	23	58	33	240		Good
Е	24	40	33			Fair
E	25	25	33			Poor
E	26	9	33			V.Poor