

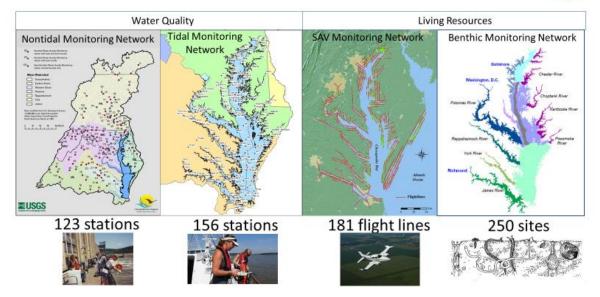
Responding to the PSC Request to Improve the CBP Monitoring Networks- Update

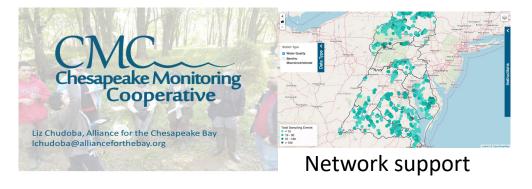
Peter Tango Breck Sullivan, Scott Phillips, Lee McDonnell & Denice Wardrop

Chesapeake Bay Program
HGIT Meeting
November 10, 2021

### Feedback Needed from the PSC in November

- How recommendations to the PSC for monitoring support are best presented so that they are actionable
- Scope of report that will be delivered
- Outline for today:
  - Quick introduction
  - Some preliminary findings
  - Potential format for recommendations
  - Scope of report
  - Feedback


# REMINDER: Monitoring Presentation to the Principal Staff Committee




- Lee McDonnell provided monitoring presentation on March 2
- Help them better understand CBP budget and funding for monitoring
- CBP networks:
  - Tidal water quality
  - Nontidal nutrients and sediment
  - SAV
  - Tidal Benthic organisms
  - Citizen Monitoring
- Current Funding:
  - CBP \$5M and partners >\$7M

CBP Partnership Monitoring Networks: Annual Monitoring







## Addressing the Principal Staff Committee Request



- Provide information needed to improve CBP monitoring networks, including:
  - (1) Current status and threats to the networks,
  - (2) what is needed to improve the monitoring sustainability, and
  - (3) what is already available to address monitoring and assessment capacity shortfalls.
  - (4) Opportunities for CBP networks to address multiple outcomes
- STAR will Coordinate Response
  - Work plan shared with PSC June 2021
  - Deliver network assessment and recommendations by January (FEBRUARY) 2022



### Process

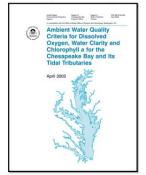
9 months start to finish

8 questions to answer Provide a short synthesis to address the questions, vision going forward.

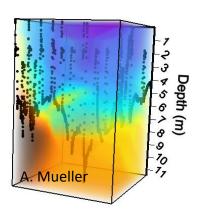
## Tidal Water Quality

#### Issue

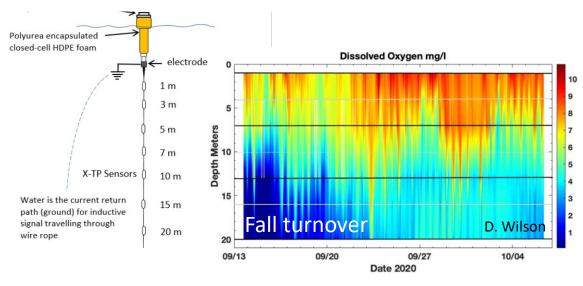
• We are not assessing all applicable water quality criteria for any segment in the Bay


#### **Gaps and opportunities**

- Unmet need: effect of inflation on level funding for longterm water quality monitoring program support
- Innovation. Vertical sensor arrays to collect high frequency dissolved oxygen, salinity and temperature data.
- Innovation. Expanded use of Community Science data
- **Innovation**. 4-dimensional water quality interpolator


#### **Application**

- Provide jurisdictions with the data necessary to fully assess all applicable water quality criteria in bay segments that reflect fish and shellfish habitat needs for their survival, growth and reproduction
- Support bay models for calibration and verification


#### Chesapeake Bay Water Quality Standards







New water quality interpolator

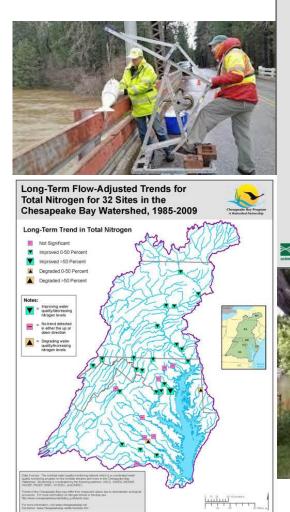


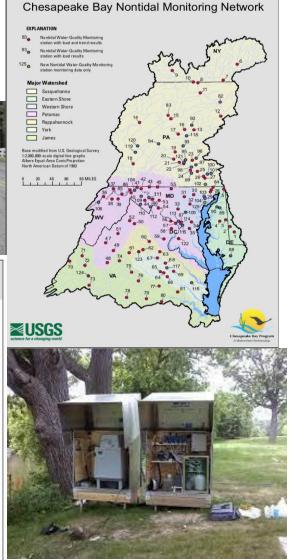
Vertical sensor array

High temporal frequency water quality profile data

## Watershed Water Quality

#### Issue


- Annual threats to station loss threaten the integrity of the Nontidal Network
- Under-represented geography in assessment, i.e., Coastal Plain


#### **Gaps and opportunities**

- **Unmet need**. Sustain existing long-term water quality monitoring program support
- **Unmet need**. Geographic representation of stations
- Innovation. Continuous monitoring sensors to collect high frequency water quality data reducing uncertainty in the assessments

#### **Application**

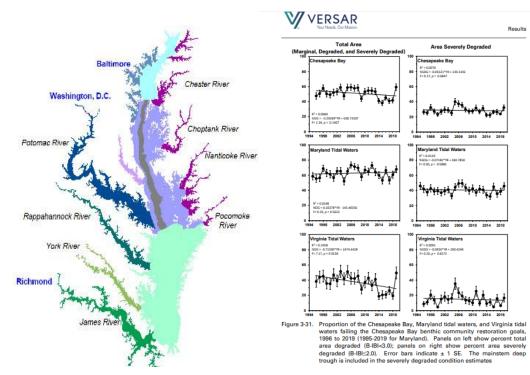
- Provide jurisdictions with locally and regionally relevant loads and trends assessing progress from management actions
- Provide models with high integrity, high resolution calibration and verification data.



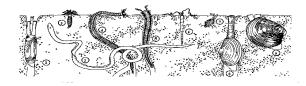


### Tidal Benthic Macroinvertebrates

#### Issue


- Summer sampling season is a key living resource assessment supporting Aquatic Life Use in the Water Quality Standards.
  - Benthic macroinvertebrates are fish forage.

#### **Gaps and opportunities**


• **Unmet need**. Sustain existing long-term water quality monitoring program support

#### **Application**

- Aquatic Life Use assessment
- Gold standard of support to creating water quality criteria
- Fish food is essential to estuary productivity and health



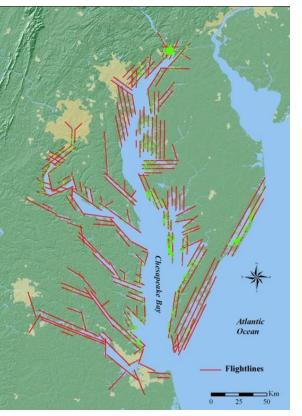
Benthic macroinvertebrate sampling regions and the Bay, MD and VA specific results 1995-2019



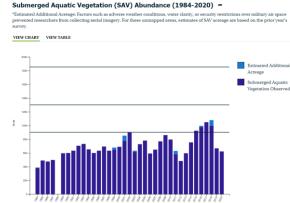
# Submerged Aquatic Vegetation

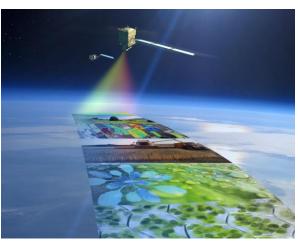
#### Issue

- Rising annual contractor costs
- Expanding air space restrictions and changing climate patterns are making it more difficult to collect imagery from planes.
- Satellite imagery options, and image access and evaluation protocols for the Bay are still evolving.


#### **Gaps and opportunities**

- **Unmet need**. Sustain long-term SAV monitoring program support
- **Innovation**. Hi-res satellite image assessment offers a potentially cost-effective monitoring option (i.e., free imagery)
- Innovation. Artificial Intelligent (AI)/machine-learning algorithms to enhance image processing efficiency


#### **Application**


- Intra-annual imagery can provide uncertainty estimates on water quality criteria assessment, seasonal change tracking
- Provide models with high integrity calibration and verification data
- Provide biomass and carbon sequestration estimates for carbon budgeting and the Blue Carbon Market (restoration financing potential)

## SAV Annual Survey results on Chesapeake Progress



SAV Annual Survey transects

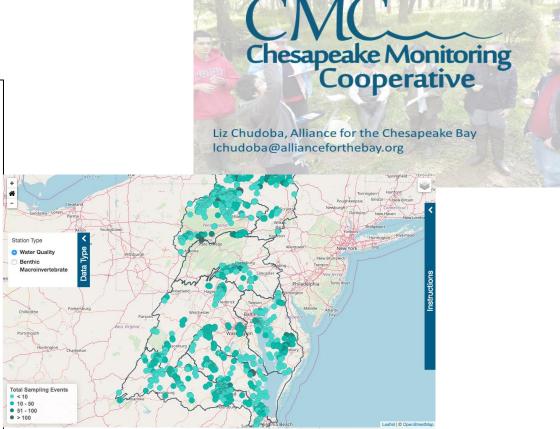




Satellite survey techniques are improving for eventual use as satellite data becomes more widely and publicly available

## Community Science

#### Issue


Growing support for key monitoring programs

#### **Gaps and opportunities**

• **Unmet need**. Expanding monitoring group equipment availability

#### **Application**

- Improved spatial representation of water quality conditions for water quality standards attainment
- Provide models with high integrity, high resolution calibration and verification data.
- Fill gaps in Stream Health data needs (stream bug sampling and analysis support)





# Opportunities for CBP networks to address multiple outcomes

#### Issue

- Indicator assessment needs
- BMP effectiveness assessment needs
- Living resource response to management actions
- Information being gathered for selected goals and outcomes

#### Gaps and opportunities

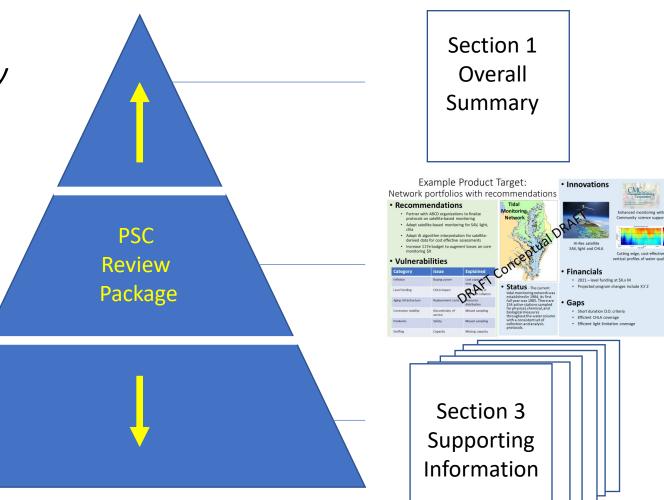
- **Unmet need**. Address monitoring needs for multiple outcomes
- Innovation: Enhance existing networks to address selected monitoring needs

#### **Application (Examples)**

- Improve understanding in SAV, water quality, living resource responses to climate change and management actions
- Understand SAV, fish, wildlife habitat requirements
- Response to PCB mitigation actions



### Tiered Communications


• **Section 1**: *Prospectus – Overall Summary* 

 Recommendations on strategies and resources needed for data collections

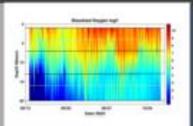
 Section 2: Summary for each CBP network: Gaps and Opportunities

 Section 3: Supporting information for each CBP network

- More details for each network
- Opportunities to address multiple outcomes

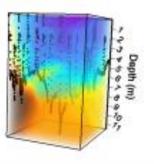


# Level of information for addressing multiple outcomes


- 1) Table of Monitoring Needs the most general
- 2) Goal statement of monitoring needs 3-4 sentences. Application, details coming soon.
- 3) Detailed data need (what, where, when, how, why) with background and costs

## How Habitat Goal Team can help

Give us input on which outcomes you want reflected in these:


- 1) Table of Monitoring Needs the most general
- 2) Goal statement of monitoring needs 3-4 sentences. Application, details coming soon.
- 3) Detailed data need (what, where, when, how, why) with background and costs

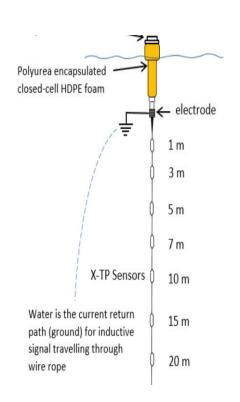











Thank you!

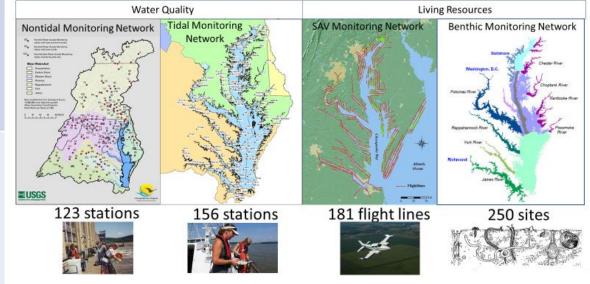


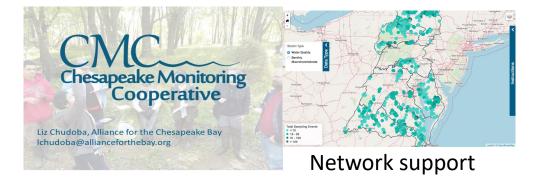
Q&A

# Example of detailed preparation supporting monitoring need: Translate concept to \$\$\$

- Estimated budget for future deployments:
- Instruments \$5000 each, delivered and calibrated.
- Buoy \$7000 with controller and cable
- Mooring anchor/chain \$600
- Prep by CWLLC, including testing and build \$4000
- Deployment / Recovery / Maintenance per trip, incl. vessel cost, CWLLC \$2000 each
- Data management \$1000
- For a 6-instrument deployment and recovery, approximate cost would be around \$47K.
- From a power standpoint, batteries will last an entire hypoxia season (estimated 8 months).
- One may want to budget one cleaning trip, totaling under \$50K. One might also consider a spare instrument




## Monitoring gaps, options and innovations




| <b>CBP Network</b>   | Gaps                                                               | Options & Innovations                                   |
|----------------------|--------------------------------------------------------------------|---------------------------------------------------------|
| Tidal Network        | Sustain existing networks                                          | 4D interpolator                                         |
|                      | Shallow water                                                      | Community Science and Sensor arrays                     |
|                      | Open water high frequency                                          | Vertical arrays                                         |
| Nontidal<br>Network  | Continuous<br>monitoring key<br>loads<br>Coastal Plain<br>stations | Strategic investment of new resources                   |
| SAV                  | Intra-annual uncertainty assessments                               | Repeated satellite imagery, Community Science protocols |
| Benthic              | None                                                               | COLA support needed                                     |
| Community<br>Science | None                                                               | Strategic expansion under discussion                    |

CBP Partnership Monitoring Networks: Annual Monitoring





