
12 Tributary Trend Summaries Released!

CAST - TMDL Tracking (chesapeakebay.net)

net/Home/TMDLTracking#tributaryRptsSection

Tributary Summaries

The Chesapeake Bay Program and its partners compiled tributary basin summaries for 12 major tributaries or tributary groups in the Chesapeake Bay Watershed. These documents summarize the following in one place: 1) How tidal water quality changes over time; 2) How factors that drive those changes change over time; and, 3) Current state of the science on connecting change in aquatic conditions to its drivers.

- · Choptank (includes the Choptank, Little Choptank, and Honga) Summary, Appendix
- Potomac: Summary, Appendices, Story Map
- Maryland Mainstem (includes the five Chesapeake Bay mainstem segments within the Maryland state boundary. Drainage basins include the Susquehanna River and upper Chesapeake Bay shorelines) Summary, Appendix
- Maryland Upper Eastern Shore (includes the Northeast, Bohemia, Elk, Back Creek, Sassafras, and Chester Rivers, the Chesapeake & Delaware Canal, and Eastern Bay) Summary, Appendix
- · Maryland Upper Western Shore (includes the Bush, Gunpowder, and Middle rivers) Summary, Appendix
- . Maryland Lower Western Shore (includes the Magothy, Severn, South, Rhode, and West rivers) Summary, Appendix
- · Patapsco and Back Summary, Appendix
- Patuxent (includes the Western Branch tributary) Summary, Appendix
- Rappahannock (includes the Corrotoman tributary) Summary, Appendices
- · York (includes the Mattaponi and Pamunkey tributaries) Summary, Appendices
- · James (includes the Appomattox, Chickahominy, and Elizabeth Tributaries) Summary, Appendix
- . Lower E. Shore (includes the Nanticoke, Manokin, Wicomico, Big Annemessex, and Pocomoke Rivers, and Tangier Sound) Summary, Appendix
- · Virginia Mainstem: Summary not available, Appendices

Special thanks to:

Olivia Devereux, Jon Harcum, Renee Karrh, Mike Lane, Rebecca Murphy, Elgin Perry, Meghan Petenbrink, Jimmy Webber, Angie Wei, and Qian Zhang

12 Tributary Trend Summaries Released!

Contacts

Jeni Keisman

Chesapeake

Water Quality

Chesapeake Bay

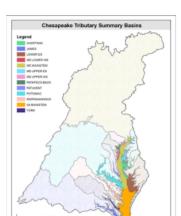
chesapeake bay program

Biology and Ecosystems

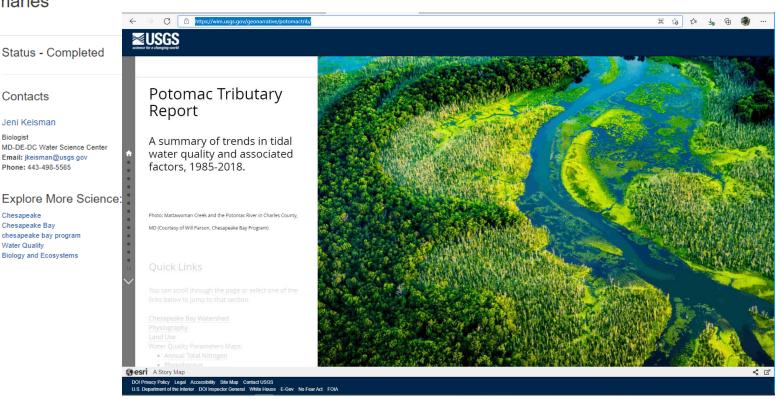
Email: jkeisman@usgs.gov Phone: 443-498-5565

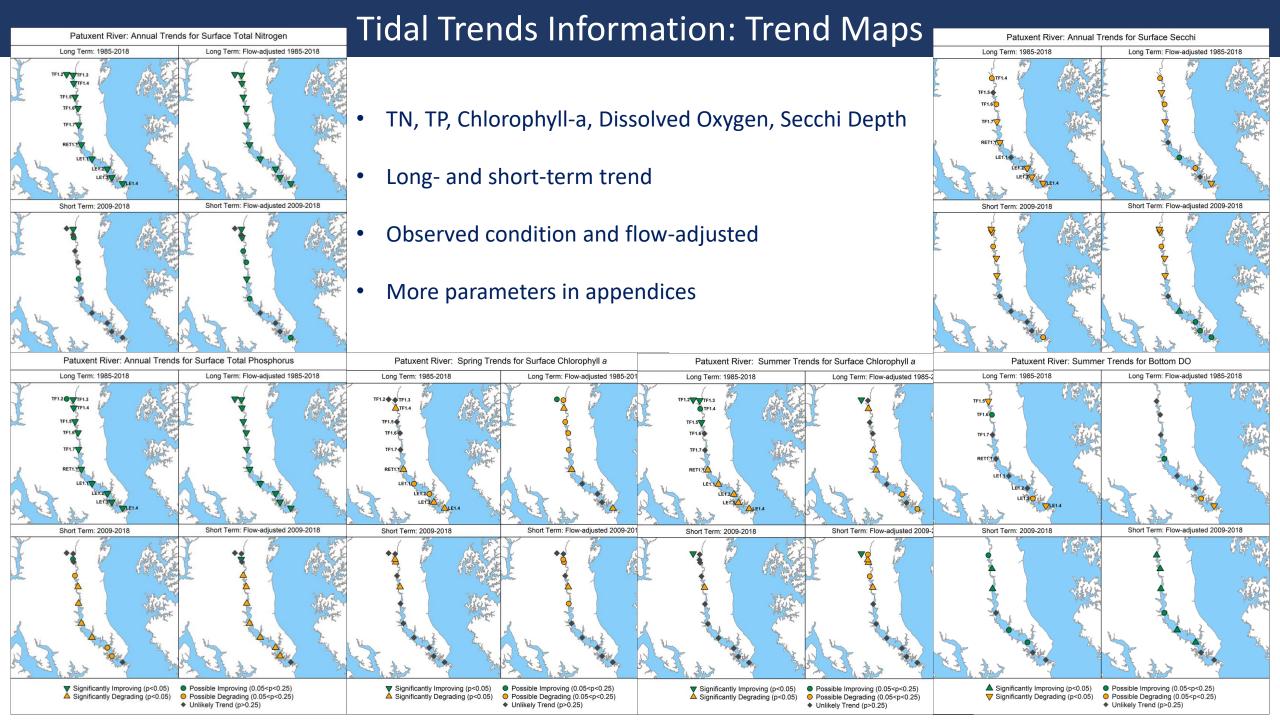
Chesapeake Science Partners Produce Tributary Summaries (usgs.gov)

Chesapeake Bay Activities

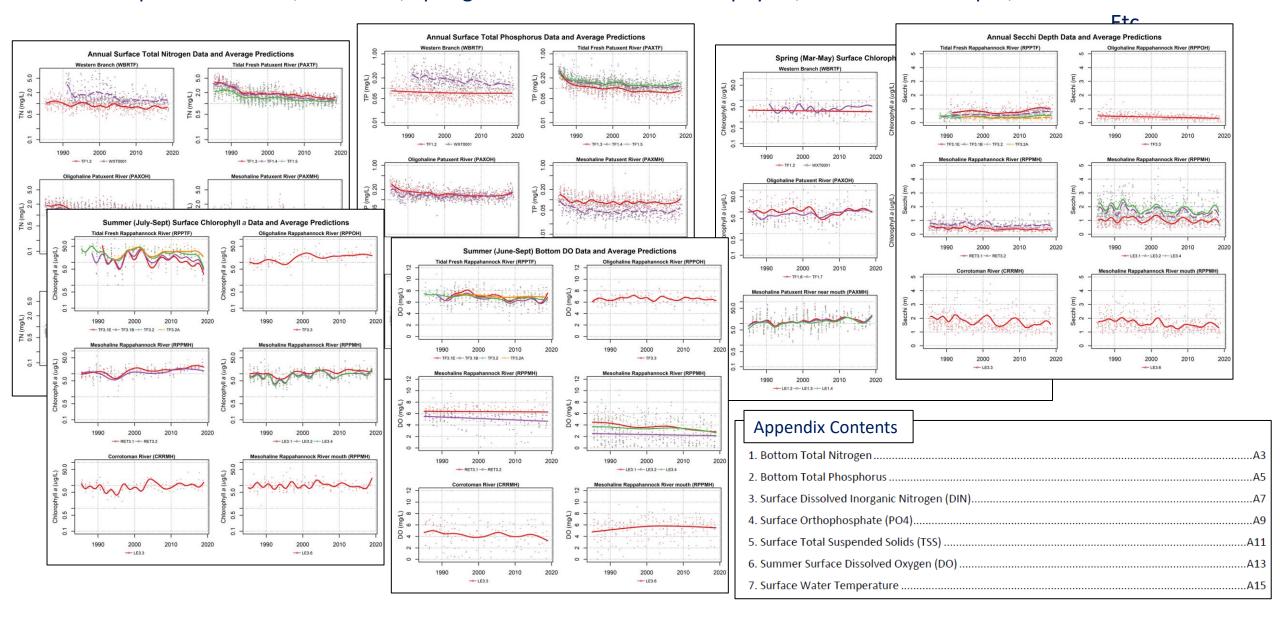

Chesapeake Science Partners Produce Tributary Summaries

Overview Issue The Chesapeake Bay Program (CBP) partnership is striving to improve water-quality conditions in the Bay and its tidal waters. The partnership needs to understand water-quality conditions in different tributaries to help assess the influence of nutrient-reduction practices and progress toward attaining water-quality standards. Compilation of Tributary Basin Summaries Several Chesapeake Bay science partners collaborated to compile tributary basin summaries for 12 major tributaries or tributary groups in the Chesapeake Bay Watershed. These documents provide for each tributary: · how tidal water quality has changed over time, and . how factors expected to drive those patterns have changed over time. · a vehicle to generate insights connecting changes in aquatic conditions to their drivers


The partners who prepared the tributary summaries collaborated through the CBP Integrated Trends Assessment Team and included the Maryland Department of Natural Resources, United States Geological Survey, University of Maryland Center for Environmental Science, and Virginia Department of Environmental Quality, with additional support from Devereux Consulting.

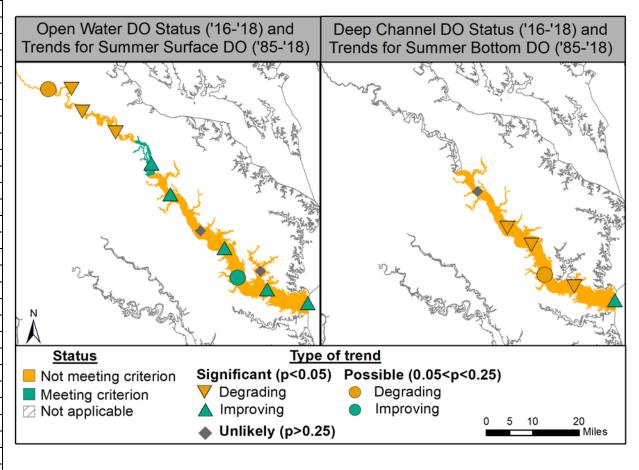

All the materials for the tributary strategies have been posted on the Chesapeake Assessment Scenario Tool (CAST) Website https://cast.chesapeakebay.net/Home/TMDLTracking#tributaryRptsSection:

- . Choptank (includes the Choptank, Little Choptank, and Honga) Summary, Appendix
- · Potomac: Summary, Appendices, Story Map
- . Maryland Mainstem (includes the five Chesapeake Bay mainstem segments within the Maryland state boundary. Drainage basins include the Susquehanna River and upper Chesapeake Bay shorelines) Summary, Appendix
- Maryland Upper Eastern Shore (includes the Northeast, Bohemia, Elk. Back Creek, Sassafras, and Chester Rivers, the Chesapeake & Delaware Canal, and Eastern Bay) Summary, Appendix
- . Maryland Upper Western Shore (includes the Bush, Gunpowder, and Middle rivers) Summary, Appendix
- Maryland Lower Western Shore (includes the Magothy, Severn, South, Rhode, and West rivers) Summary, Appendix
- Patapsco and Back <u>Summary</u>, <u>Appendix</u>
- . Patuxent (includes the Western Branch tributary) Summary, Appendix
- Rappahannock (includes the Corrotoman
- tributary) Summary, Appendices
- · York (includes the Mattaponi and Pamunkey
- tributaries) Summary, Appendices
- . James (includes the Appomattox, Chickahominy, and Elizabeth Tributaries) Summary, Appendix

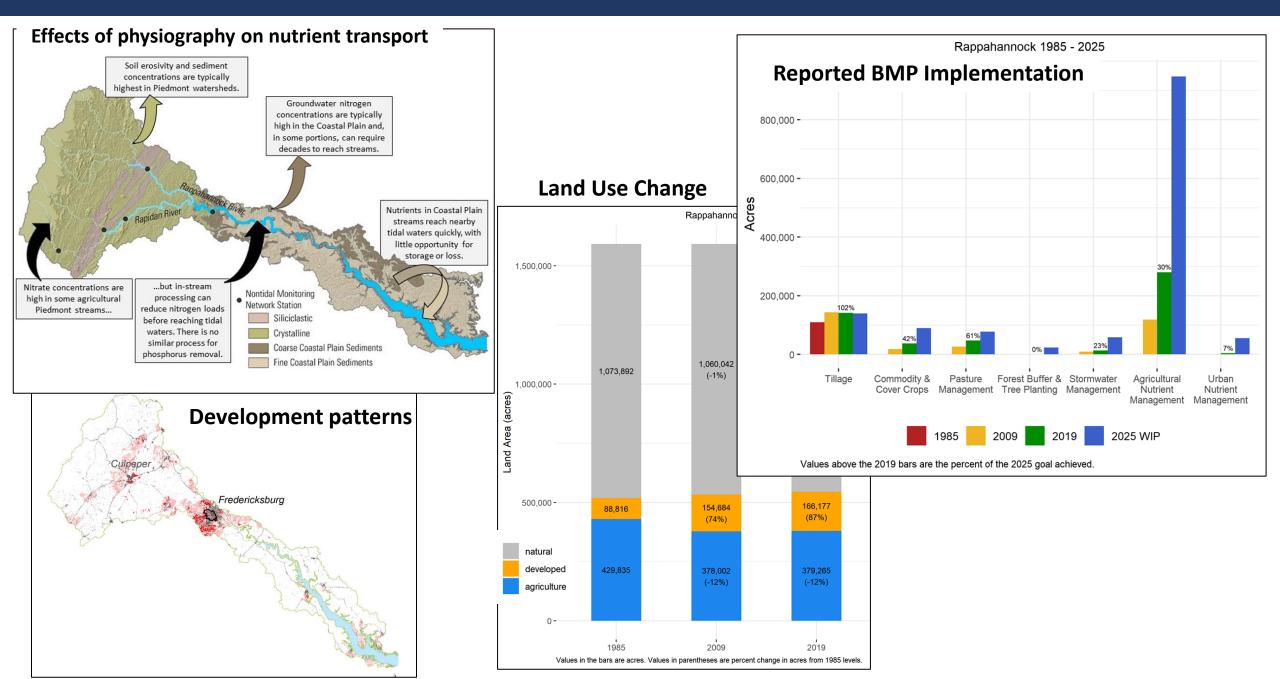

Potomac Tributary Report (usgs.gov)

Tidal Trends Information: Station-level change over time by segment

Main report: Annual TN, Annual TP, Spring & Summer Surface Chlorophyll a, Annual Secchi Depth, Summer Bottom DO



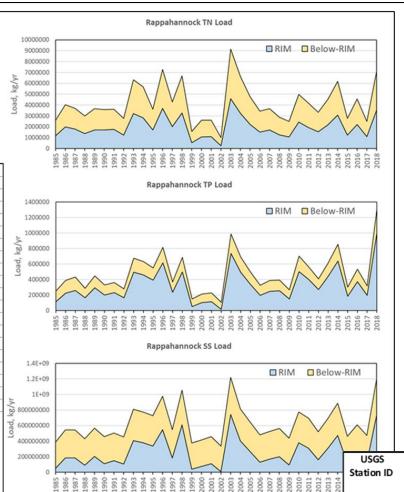
Tidal Trends Information: DO Criteria Attainment Record

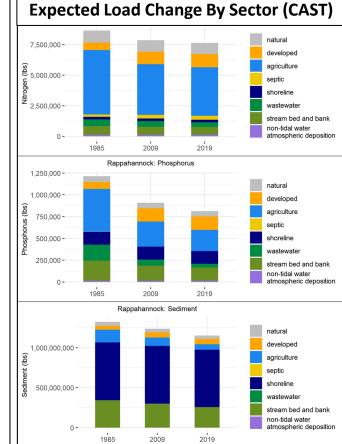

Open Water Summer DO

DW and DC Summer DO

time period	RPPTF	RPPOH	RPPMH	CRRMH	time period	Deep Water	Deep Channel
1985-1987						RPPMH	RPPMH
1986-1988					1985-1987		
1987-1989					1986-1988		
1988-1990					1987-1989		
1989-1991					1988-1990		
1990-1992					1989-1991		
1991-1993					1990-1992		
1992-1994					1991-1993		
1993-1995					1992-1994		
1994-1996					1993-1995		
1995-1997					1994-1996		
1996-1998					1995-1997		
1997-1999					1996-1998		
1998-2000					1997-1999		
1999-2001					1998-2000		
2000-2002					1999-2001		
2001-2003					2000-2002		
2002-2004					2001-2003		
2003-2005					2002-2004		
2004-2006					2003-2005		
2005-2007					2004-2006		
2006-2008					2005-2007		
2007-2009					2006-2008		
2008-2010					2007-2009		
2009-2011					2008-2010		
2010-2012					2009-2011		
2011-2013					2010-2012		
2012-2014					2011-2013		
2013-2015					2012-2014		
2014-2016					2013-2015		
2015-2017					2014-2016		
2016-2018					2015-2017		
2010 2010	<u> </u>				2016-2018		

Watershed Factors Information


Watershed Factors Information


Estimated TN, TP, Sediment Loads (RIM + WSM)

Variable	Trend, metric ton/yr	Trend p-value
TN		<i>9</i> ,
Total watershed	12	0.70
RIM watershed ¹	4.5	0.73
Below-RIM watershed ²	6.7	0.55
Below-RIM point source	-2.5	< 0.01
Below-RIM nonpoint source 3	13	0.30
Below-RIM tidal deposition	-2.0	< 0.05
TP		
Total watershed	5.4	0.15
RIM watershed	5.0	0.12
Below-RIM watershed	0.51	0.50
Below-RIM point source	-0.58	< 0.01
Below-RIM nonpoint source	1.4	< 0.05
SS		
Total watershed	4,158	0.18
RIM watershed	3,484	0.21
Below-RIM watershed	680	0.19
Below-RIM point source	-4.0	< 0.01
Below-RIM nonpoint source	678	0.19

Loads for the RIM watershed were estimated loads at the USGS RIM station 01668000 (Rappahannock River near Fredericksburg, Va.; https://cbrim.er.usgs.gov/loads_query.html).

³ Below-RIM nonpoint source loads were obtained from the Chesapeake Bay Program Watershed Model's progress runs specific to each year from 1985 and 2018, which were adjusted to reflect actual hydrology using the method of the Chesapeake Bay Program's Loads to the Bay indicator (see https://www.chesapeakeprogress.com/clean-water/water-quality).

Station ID		start	water year 2018		
		water year	TN	TP	SS
01664000	RAPPAHANNOCK RIVER AT	1985	24.4	-	-
	REMINGTON, VA	2009	15.4	-	-
01665500	RAPIDAN RIVER NEAR RUCKERSVILLE, VA	2009	-5.1	-	-
01666500	ROBINSON RIVER NEAR LOCUST	1985	2.5	-	-
	DALE, VA	2009	3.5	-	-
01667500	RAPIDAN RIVER NEAR CULPEPER, VA	2009	-8.9	-6.8	-7.1

1985

2009

-12.7

Trend

Percent change in FN load, through

52.5

27.9

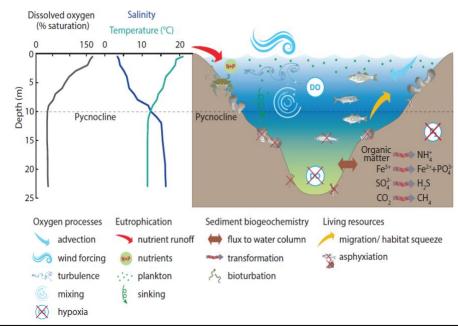
79.9

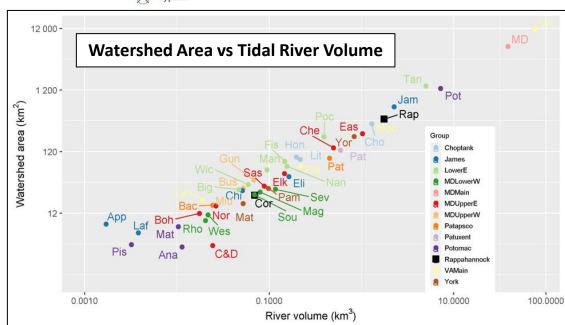
28.3

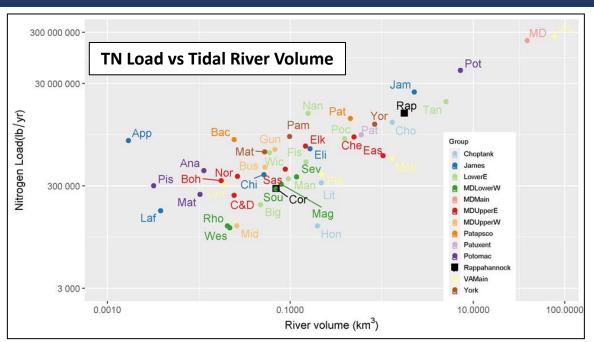
USGS Station Name

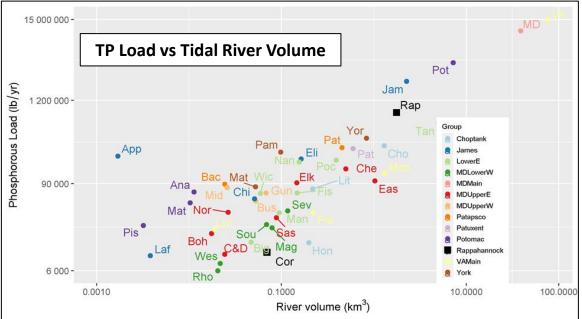
RAPPAHANNOCK RIVER NEAR

FREDERICKSBURG, VA


01668000


Estimated Flow-Normalized Load Change (WRTDS)


² Loads for the below-RIM watershed were obtained from the Chesapeake Bay Program Watershed Model (https://cast.chesapeakebay.net/).


Estuarine Factors Information

What Now?

Contents

1. Purpose and Scope	3
2. Location	4
2.1 Watershed Physiography	4
2.2 Land Use	6
2.3 Tidal Waters and Stations	9
3. Tidal Water Quality Dissolved Oxygen Criteria Attainment	10
4. Tidal Water Quality Trends	13
4.1 Surface Total Nitrogen	13
4.2 Surface Total Phosphorus	16
4.3 Surface Chlorophyll a: Spring (March-May)	18
4.4 Surface Chlorophyll a: Summer (July-September)	20
4.5 Secchi Disk Depth	22
4.6 Summer Bottom Dissolved Oxygen (June-September)	24
5. Factors Affecting Trends	26
5.1 Watershed Factors	26
5.1.1 Effects of Physical Setting	26
5.1.2 Estimated Nutrient and Sediment Loads	28
5.1.3 Expected Effects of Changing Watershed Conditions	31
5.1.4 Best Management Practices (BMPs) Implementation	34
5.1.5 Flow-Normalized Watershed Nutrient and Sediment Loads	35
5,2 Tidal Factors	35
5.3 Insights on Change in the Rappahannock	39
6. Summary	40
References	41
Appendix	45

Insights On Change (Potomac)

- Summarize insights from research, monitoring, modeling studies.
- What can we explain?
- What new work could advance our understanding?

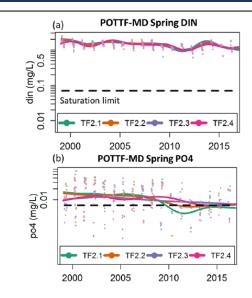
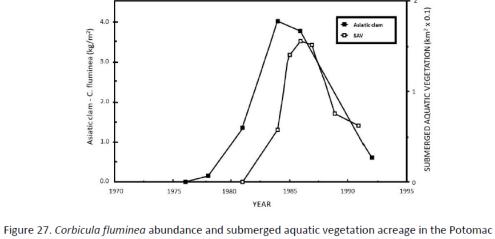
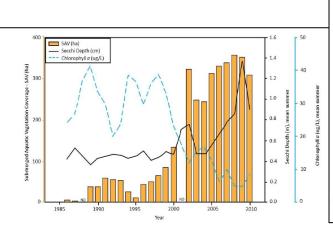




Figure 26. Spring dissolved inorganic nitrogen (a) and spring phosphate (b) at monitoring stations in the tidal Potomac River from 1999 to 2018. Black dotted lines represent nutrient saturation thresholds. Courtesy Rebecca Murphy.

River estuary near Washington, D.C., 1970-1992. Adapted from Phelps (1994).

SAV (ha) Secchi Depth (cm) ★ Chlorophyll a (ug/L)

Figure 25. Algal biomass (as chlorophyll a), Secchi depth, and SAV acreage for the period 1994 - 2016 in Gunston Cove. From Jones et al. (2017).

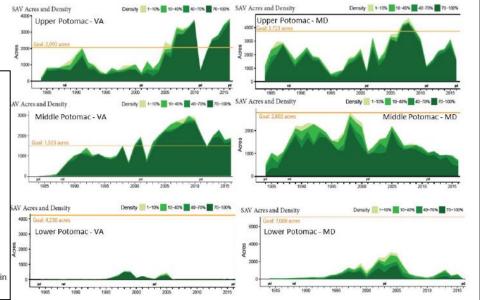
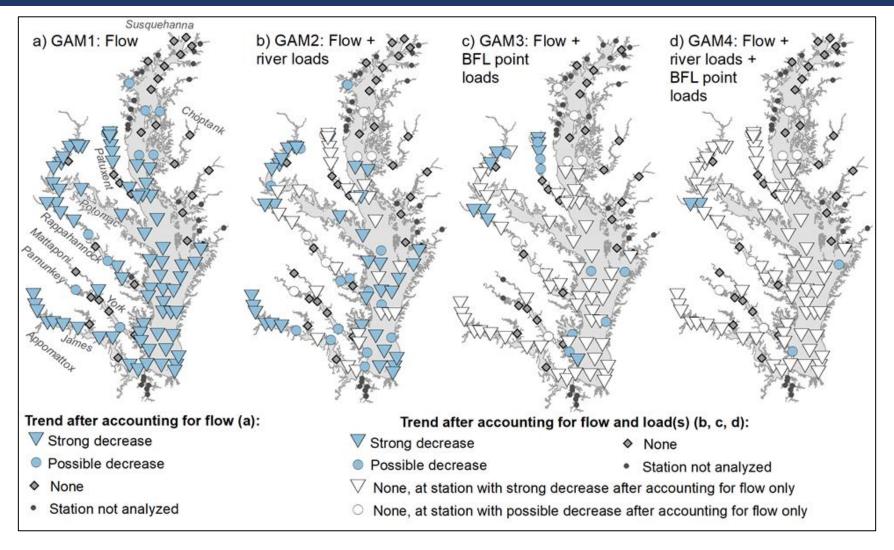
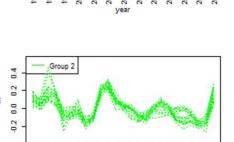
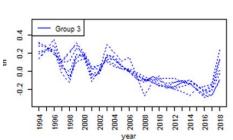


Figure 28. Changes in SAV acreage and density over time across salinity zones of the tidal Potomac River. Graphs and interpretation presented here are excerpted from the SAV Synthesis Effort and the Chesapeake Bay Program's SAV Fact Sheets, available through the Chesapeake Bay Watershed Data Dashboard, Tidal Waters section (https://gis.chesapeakebay.net/wip/dashboard/).

Figure 24. Annual summary of SAV coverage (ha), water clarity (Secchi disk depth), and algal biomass (chlorophyll a concentration) for the period 1986-2010 in Mattawoman Creek. Note the large change in SAV coverage and water clarity associated with the large decline in algal biomass. From Boynton et al.

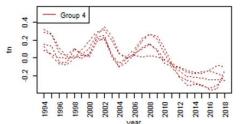
New Insights: TN & TP Changes explained by RIM & BFL Point Source Loads

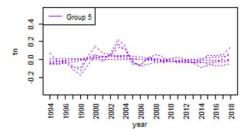



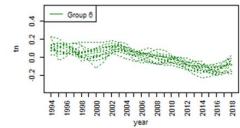

Figure 5. Surface total nitrogen (TN) 1999-2018 analysis summarizing remaining trend after accounting for freshwater flow (a), river load (b), BFL point load (c) and both loads (d). Filled symbols indicate trend was not explained by the variable(s), open symbols indicate trend was explained by the variable(s) added in that equation.

Ongoing Analysis: Spatial patterns may help explain change over time

Light green & Red:


- Similar responses to flow.
- Green in the upper bay and the mesohaline of upper bay tributaries
- Red in the lower bay and mesohaline of lower bay tributaries.
- The response to flow tends to attenuate moving seaward.

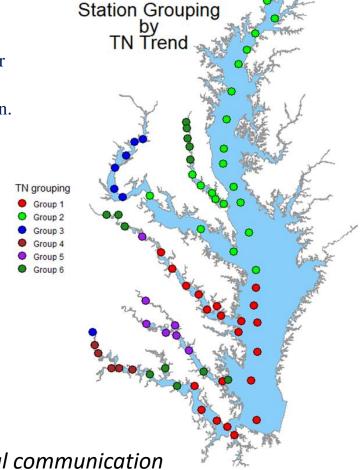




Blue:

- Mostly the tidal fresh Potomac and the uppermost tidal fresh James.
- Shows high TN around 1999 that does not occur for red and green.
- Did the western Bay watershed experience a precipitation event in 1999 that missed the more eastern rivers and the Susquehanna?

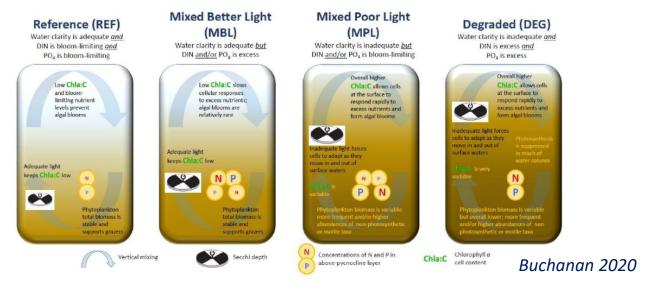
Dark green:


- Improvement; little response to flow.
- Occurs in the tidal fresh of the Rappahannock and Patuxent.

Brown:

- Confined to the TF James.
- A pattern we associate with dilution in that high flow years tend to have lower TN.
- Suggests that TN in the James is primarily controlled by point sources and ground water which are diluted in high flow events.

Purple:

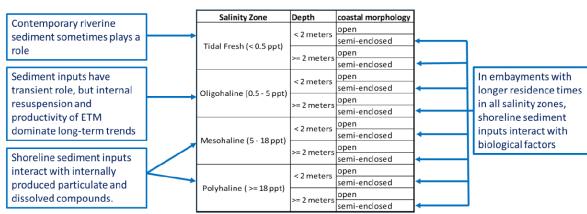

- No improvement.
- Confined to the upper York and one Rappahannock station.

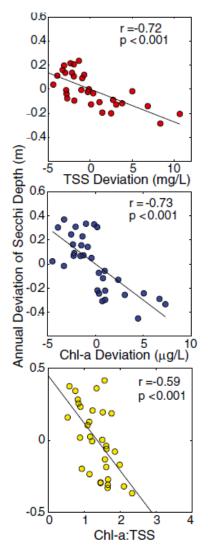
Elgin Perry, personal communication

Ongoing Analysis: Synthesis effort insights can be incorporated

May see transient increase in mean chlorophyll a along a restoration trajectory, but fewer extremes

Drivers have different relative importance depending on habitat characteristics



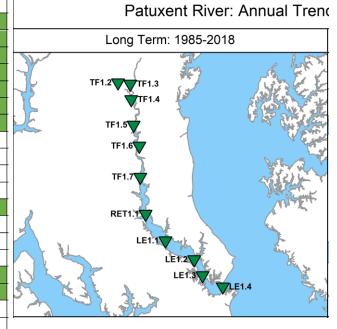

Figure 1: Proposed "water clarity habitats" framework for exploring drivers of water clarity across environmental settings in Chesapeake Bay and its tidal tributaries

Voicement and

> TSS is most closely associated with secchi depth in the upper bay

Material associated with phytoplankton is most closely related to secchi depth in the mid-bay.

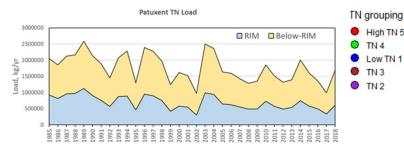
In the lower bay, Secchi is lower when phytoplanktonderived material is a larger contributor to TSS pools.

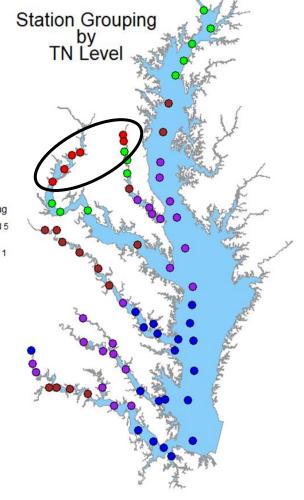


Ongoing analysis to generate insights

Your work here?

Exploring "Why" Questions


time period	WBRTF	PAXTF
1985-1987	ND	
1986-1988	ND	
1987-1989	ND	
1988-1990	ND	
1989-1991		
1990-1992		
1991-1993		
1992-1994		(0)
1993-1995	(0)	(0)
1994-1996	(0)	(0)
1995-1997	(0)	(0)
1996-1998		
1997-1999	(0)	(0)
1998-2000	(0)	(0)
1999-2001	(0)	(0)
2000-2002	(0)	
2001-2003		
2002-2004		(0)
2003-2005		(3)
2004-2006	(0)	(0)
2005-2007	(0)	(0)
2006-2008	(0)	(0)
2007-2009		(0)
2008-2010		(0)
2009-2011		(0)
2010-2012	(0)	(0)
2011-2013	(0)	(3)
2012-2014	(0)	(0)
2013-2015	(1)	(0)
2014-2016	(0)	(0)
2015-2017	(0)	(0)
2016-2018	(0)	(0)



ng/L) 2.0 5.0	Tidal F	resh Patuxent	River (PAXTF)	الْحُدُّةُ عُنْهُ الْمُ
TN (mg/L) 0.5 2.0				Ace.
0.1				
	1990	2000 F1.3 — TF1.4 —	2010	2020

USGS Station ID	USGS Station Name	Trend start	Percent change in FN load, through water year 2018		
		water	TN	TP	SS
01591000	PATUXENT RIVER NEAR UNITY, MD	year 1985	2.7	-58.6	-1.3
01591000	PATOXENT RIVER NEAR UNITY, IVID				
		2009	7.5	18.5	19.4
01594440	PATUXEN RIVER AT BOWIE, MD	1985	-65.4	-64.2	-39.8
		2009	-20.7	-6.4	1.2
01594526	WESTERN BRANCH AT UPPER	2009	-6.3	-10.4	-9.9
	MARLBORO, MD				

Variable	Trend, metric	Trend p-value
	ton/yr	
TN		
Total watershed	-22	< 0.01
RIM watershed ¹	-14	< 0.01
Below-RIM watershed ²	-9.8	< 0.05
Below-RIM point source	-6.5	< 0.01
Below-RIM nonpoint source 3	-2.0	0.68
Below-RIM tidal deposition	-0.90	< 0.01

Discussion

Reference for tributary modeling efforts:

Inform management:

Stakeholder engagement

Updating:

- "Get to know your trib"
- Are these patterns consistent with theory?
- Are these patterns consistent with process model predictions?
- Identify priorities for new analysis and modeling studies
- "Why?" discussions
- Gives local watershed groups valuable technical information that they can't produce themselves
 - MWCOG used content in their 2019 Potomac Water Quality report

 Potomac River Water Quality Report Final.pdf
 - Friends of the Rappahannock report card?
- Discussions are vehicle for new citizen science connections
 - Rappahannock meeting SAV discussion
- Almost all "dynamic" figures are produced using automated scripts. Minimal descriptive text is standard across all summaries for easier updating
- Watershed load information that was added/modified during review process is documented. Produce cheat sheet for updating? Consider potential automation with scripts?

Discussion

Reference for tributary modeling efforts:

Inform management:

Stakeholder engagement

Updating:

- "Get to know your trib"
- Are these patterns consistent with theory?
- Are these patterns consistent with process model predictions?
- Identify priorities for new analysis and modeling studies
- "Why?" discussions
- Gives local watershed groups valuable technical information that they can't produce themselves
 - MWCOG used content in their 2019 Potomac Water Quality report
 Potomac River Water Quality Report Final.pdf
 - Friends of the Rappahannock report card?
- Discussions are vehicle for new citizen science connections
 - Rappahannock meeting SAV discussion
- Almost all "dynamic" figures are produced using automated scripts. Minimal descriptive text is standard across all summaries for easier updating
- Watershed load information that was added/modified during review process is documented. Produce cheat sheet for updating? Consider potential automation with scripts?