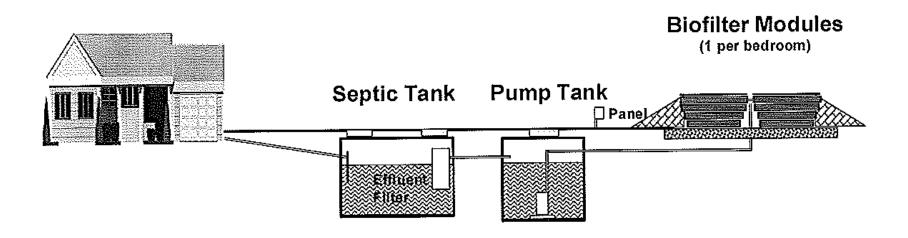
# Two Onsite BMP Proposals

September 9, 2014 Eric Aschenbach Virginia Department of Health

### Overview

- Two manufacturers submitted requests for onsite sewage sector Best Management Practices (BMPs) to VDH May 2014.
- Originally to go directly to WWTWG, but modifications to the BMP Protocol in June 2014 dictated that VDH present these BMPs.

### **Proposed BMPs**


- Anua
  - Puraflo Peat Biofilter with shallow dispersal (≤ 18 inches) to pad or trench dispersal
  - ≥ 50% net N reduction requested
- American Manufacturing Company (AMC)
  - Filtered septic tank effluent (STE) distributed at low loading rates
  - < 12 inch install depth and > 12 inch separation to limiting feature
  - Soil texture groups 2, 3, and 4 (not 1)
  - ≥ 50% net N reduction requested

## Anua Puraflo Peat Biofilter to pad/trench



### Typical pad layout

#### Purado Peat Biofilter



### **Supporting Information**

- Two studies cited
  - NC
  - Virginia

### Anua Puraflo Peat Biofilter - NC Study

- Lindbo, D.L. and V. L. MacConnell, 2001, "Evaluation of a Peat Biofilter Treatment System," Proceedings of the Ninth National Symposium on Individual and Small Community Sewage Systems, American Society of Agricultural Engineers.
- 4 sites all repairs of failing systems (3 pad sites, 1 trench site)
- Samples collected from:
  - Piezometers up & down gradient, below pads/trenches
  - Septic tank
  - Peat filter
- Data suggests 81% *net* removal of TN from septic tank to below pads/trenches.

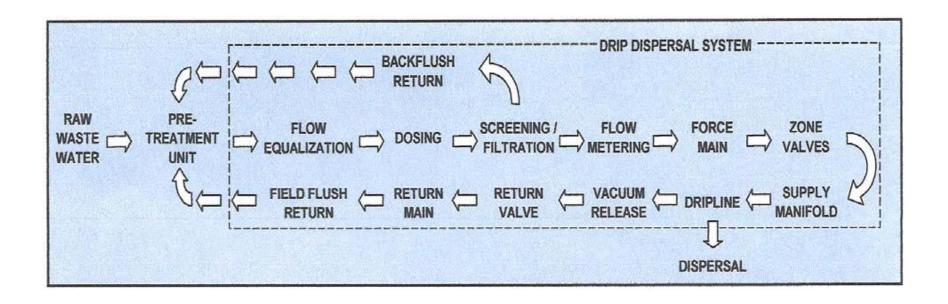
### Anua Puraflo Peat Biofilter - VA Study

- Conducted by Old Dominion University
- 24 sites in 4 different soil texture groups
- Samples collected from:
  - Septic tank or pump tank
  - After Peat filter
  - Well 12 inches below bottom of pad/trench
  - Upgradient wells
  - Downgradient wells
- Monthly samples July 1997 to July 1998, then quarterly through August 1999

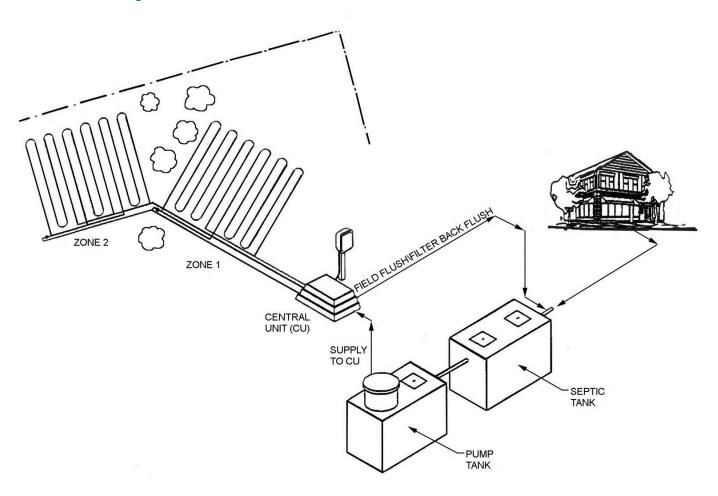
### Anua Puraflo Peat Biofilter - VA Study

|                 | Samples | Monthly<br>Avg TN<br>(mg/l) | % Reduction<br>From PT | % Reduction<br>From SC | %<br>Reduction<br>From PW |
|-----------------|---------|-----------------------------|------------------------|------------------------|---------------------------|
| Background (BG) | n=72    | 1.84                        |                        |                        |                           |
| Pump Tank (PT)  | n=108   | 58.12                       |                        |                        |                           |
| Puraflo Sample  |         |                             |                        |                        |                           |
| Chamber (SC)    | n=146   | 34.83                       | 40.1%                  |                        |                           |
| Pad Well (PW)   | n=83    | 14.65                       | 74.8%                  | 58.0%                  |                           |
| 10-ft Down-     |         |                             |                        |                        |                           |
| gradient (DG)   | n=85    | 6.04                        | 89.6%                  | 82.7%                  | 58.8%                     |

### Anua Puraflo Peat Biofilter - VA Study


- 5 kg raw → Puraflo unit at 40% reduction → 3 kg out of Puraflo unit and into pad/trench
- Pad reduces additional 58% from Puraflo unit (sample chamber) → 1.26 kg delivered at edge of drainfield
- *Net* reduction beyond baseline is (4 1.26)/4 = 68.5%

### Puraflo Peat Biofilter - Summary


BMP Request: Anua Puraflo Peat Biofilter with shallow dispersal (≤ 18 inches) to pad or trench dispersal for ≥ 50% net N reduction.

Recommendation: Advance to Onsite BMP Panel for detailed review.

## American Manufacturing Company Perc-Rite Drip Dispersal System



## Typical layout



## Static Plow Installation of Tubing





## American Manufacturing Company Perc-Rite Drip Dispersal System



### **Basis**

Two main studies are used in support of the request, which specifically used the Perc-Rite system:

1. Hepner, L.D., D. Linde, C. Weber, and D. Smith, 2007, "Reduction of Bacteriologic and Chemical Constituents of Septic Tank Effluent with Depth Using a Drip Dispersal System," Eleventh Individual and Small Community Sewage Systems Conference Proceedings, ASABE Publication Number 701P1107.

Additional information on this study is found in: Hepner, L.D., D. Linde, C. Weber, and D. Smith, 2005, "Alternative On-Lot Technology Research – Soil Based Treatment Systems," Delaware Valley College, Doylestown, PA.

2. Hayes, J.G. Jr. and A.N. Moore, 2007, "Long Term Impacts of Micro-Irrigation 'Drip' Treatment and Disposal Systems on Delaware's Marginal Soils," Eleventh Individual and Small Community Sewage Systems Conference Proceedings.

### **AMC Perc-Rite Drip Dispersal**

Summary from Hepner, et al. (2007):

- Three sites; 0.17 gpd/ft² loading rate using filtered STE
- 1200 linear feet of tubing; install depth 8-10 inches
- Moderately well-drained soil (Readington) on slope 18-24%; fragipan at 25 inches with redox above
- Lysimeters at 1, 2, 3, and 4 foot beneath soil surface
- Samples collected monthly for 20 months; ammonia and nitrate-N (assumption all organic N converted)
- 85% removal of N reported at 1-foot depth
- 5 kg x (1 0.85) = 0.75;  $(4 0.75)/4 \times 100 = 81\%$  net reduction

### **AMC Perc-Rite Drip Dispersal**

Summary from Hayes and Moore (2007):

- Sandy loam or loam installs
- 50 cm to seasonal high water table (SHWT) at two sites; 28 cm to limiting feature (LF) at one site; and last site has SHWT to surface (pretreated effluent)
- Three sites with STE, one site with secondary effluent
- 24 sample events obtained from piezometers upgradient, within the drainfield, and downgradient.
- Initial 18 months, then eight years later a 3-month study
- 81% removal on average in drainfield sampling wells
- 5 kg x (1 0.81) = 0.95;  $(4 0.95)/4 \times 100 = 76\%$  net reduction

### **AMC Perc-Rite Drip Dispersal**

WERF study by McCray, et al. (2009):

- Analysis of loading rates and soil types using N-CALC from Water Environment Research Foundation (WERF).
- Suggests a predictive relationship between hydraulic loading rate (HLR) and N reduction.
- AMC suggests that HLR is a more important design factor than soil type based on statistical testing.

### AMC Perc-Rite Drip Dispersal - Summary

#### Request:

- Filtered septic tank effluent distributed at low loading rates
- < 12 inch install depth and > 12 inch separation to limiting feature
- Soil texture groups 2, 3, and 4 (not 1)
- ≥ 50% net N reduction

Recommendation: Advance to Onsite BMP Panel for more detailed review.