Potential Updates to Nutrient Load Estimates from Chesapeake Tidal Wetlands

Modeling Workgroup Meeting – April 2019

Isabella Bertani¹, Richard Tian¹ & Lewis Linker²
¹UMCES, ²EPA

Based on Cornwell et al. 2018 - An Investigation of the Composition and Reactivity of Material Eroded from Chesapeake Bay Marshes.

Report to United States Army Corps of Engineers (ERDC-EL)

Proposed changes to shoreline erosion load coefficients based on Cornwell et al. 2018

	Current values	Proposed values
Sediment bulk density (g/cm³)	1.38 banks 0.62 marshes	1.38 banks0.3 marshes
[N] (%)	0.029 banks 0.029 marshes	0.029 banks 1.20 marshes
[P] (mg/g)	0.205 banks 0.205 marshes	0.205 banks 0.70 marshes
% IP	14	14
OM decay rate (d ⁻¹)	20% G2 (180 * 10 ⁻⁵) 80% G3 (6.5 * 10 ⁻⁵)	100% G3 (based on observed decay rate ~ 7 * 10 ⁻⁵)

Numbers will be subject to verification and potential adjustments during model calibration

How are loads from shoreline erosion currently estimated?

Sources: Hennesee et al. 2006; Halka & Hopkins, 2006

1. Calculate volume of sediment lost from erosion:

$$V = L * W * H$$

 $V = \text{annual volume of sediment lost from bank erosion } (m^3/year)$

L = shoreline length (m)

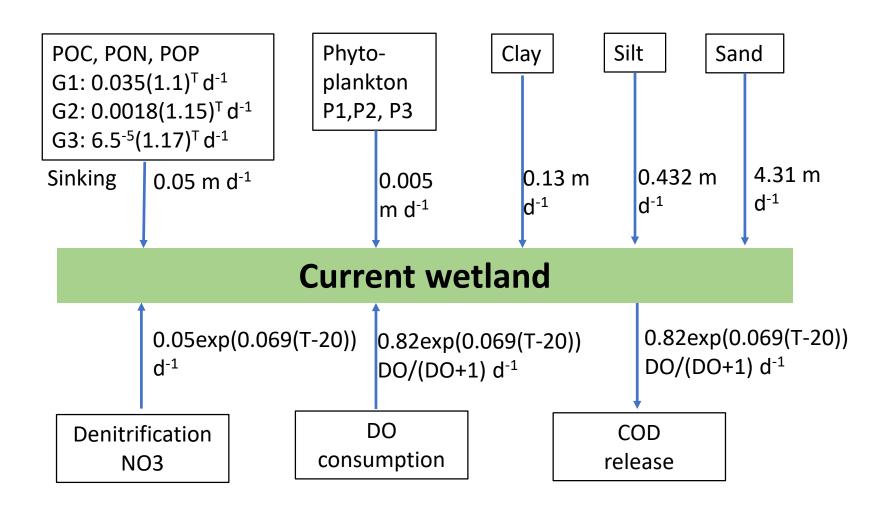
W = rate of shoreline recession (m/year)

H = bank height or marsh elevation (m)

2. Convert sediment volume to mass:

$$M = d * V$$

M = annual mass of sediment lost from bank erosion (kg/year) d = dry sediment bulk density (kg/m³)


How are loads from shoreline erosion currently estimated?

3. Multiply sediment mass by assumed nutrient content:

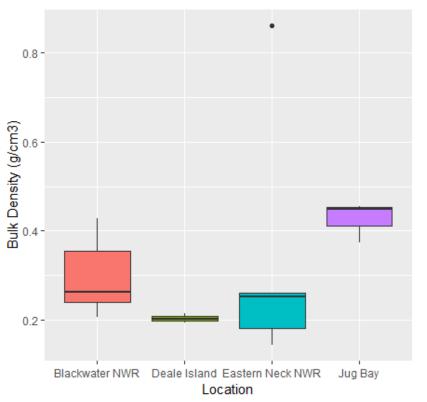
Current assumptions:

- $d = 1.38 \text{ g/cm}^3$ for banks and 0.62 g/cm^3 for marshes
- [N] = 0.29 mg N/g solids and [P] = 0.205 mg P/g solids
- [N] = 20% G2, 80% G3
- [P] = 14% PIP, 17% G2, 69% G3
- Bank erosion = 56% silts and clays, 44% sand (no organic)
- Marsh erosion: 44% silts and clay, 34% organic matter, 12% sand

Current wetland model

Results from recent study

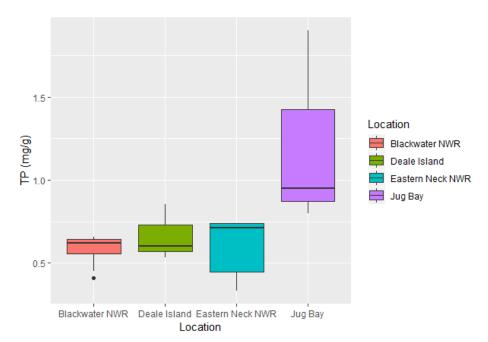
An Investigation of the Composition and Reactivity of Material Eroded from Chesapeake Bay Marshes


Final Report to United States Army Corps of Engineers (ERDC-EL)

Jeffrey C. Cornwell, Alison Sanford, Michael Owens, Zoe Vulgaropulos

Cornwell et al. 2018

Results from recent study – Dry sediment bulk density


Location	Avg Density (sd) g/cm ³
Blackwater	0.3 (0.08)
Deale Island	0.2 (0.01)
Eastern Neck	0.3 (0.3)
Jug Bay	0.4 (0.05)

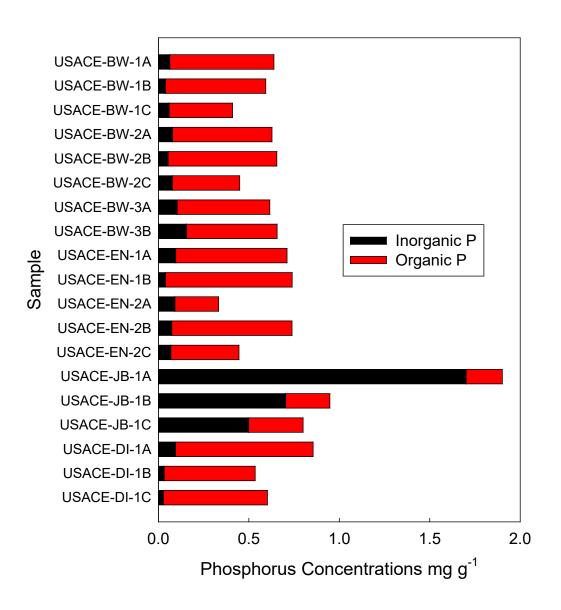
Current numbers:

 $d = 1.38 g/cm^3$ for banks

 $d = 0.62 g/cm^3$ for marshes

Results from recent study – Sediment nutrient content

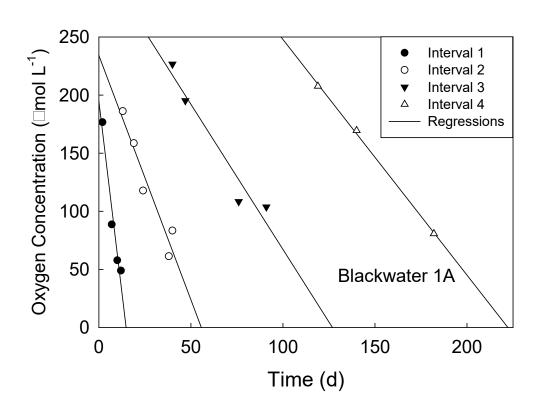
2.0 - 1.5 - (%)		Location
0.5		Jug Bay
Blackwater NWR	Deale Island Eastern Neck NWR Jug Ba Location	
Location	Avg TN (sd) (9	%)


Location	Avg TP (sd) (mg/g)
Blackwater	0.58 (0.10)
Deale Island	0.67 (0.17)
Eastern Neck	0.59 (0.19)
Jug Bay	1.22 (0.60)

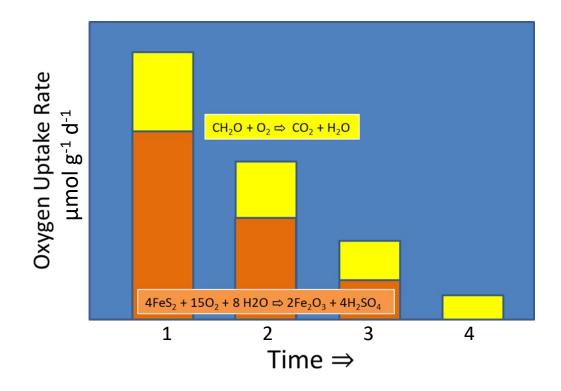
Location	Avg TN (sd) (%)
Blackwater	1.35 (0.70)
Deale Island	1.97 (0.14)
Eastern Neck	1.03 (0.52)
Jug Bay	0.39 (0.07)

[P] = 0.205 mg P/g solids

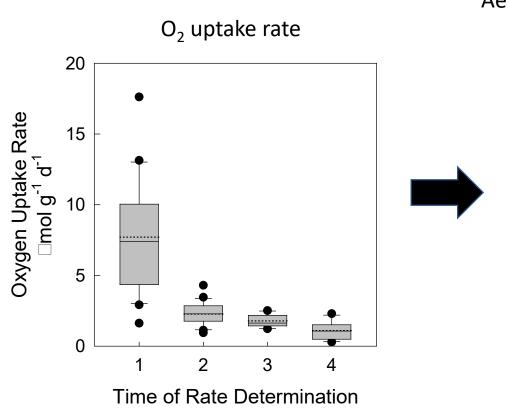
[N] = 0.29 mg N/g solids = 0.029 % N


Results from recent study – Sediment nutrient content

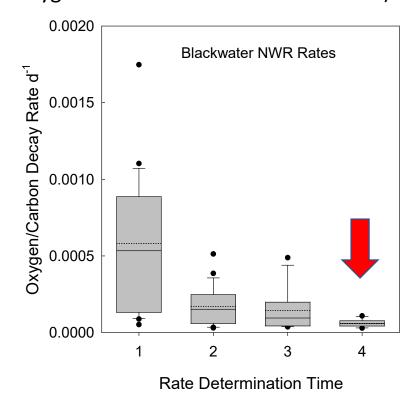
Current number:


[P] = **14%** INORGANIC

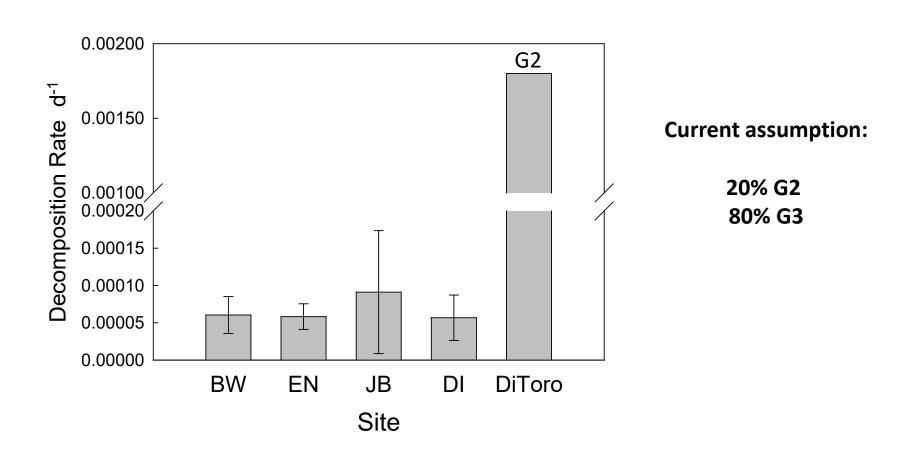
Each incubation, with the exception of Deale Island, consisted of 4 time periods. One regression of O_2 vs time was estimated for each time period


Two processes consume O_2 during incubation experiments:

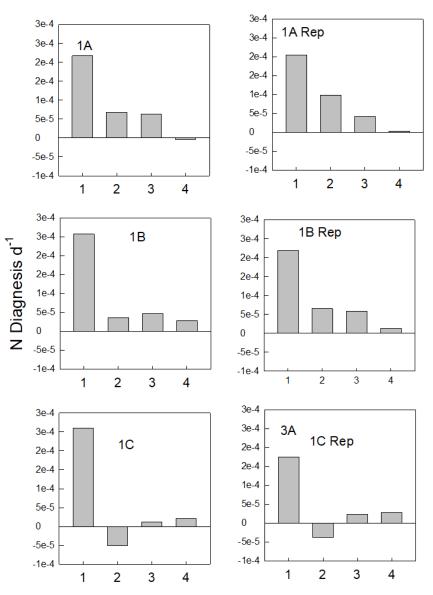
- FeS₂ oxidation (occurs rapidly and dominates O₂ consumption at early stages of incubation)
- Decomposition of organic matter (dominates at later stages of incubation)



Cornwell et al. 2018


Example of decomposition rates during incubation Blackwater National Wildlife Refuge

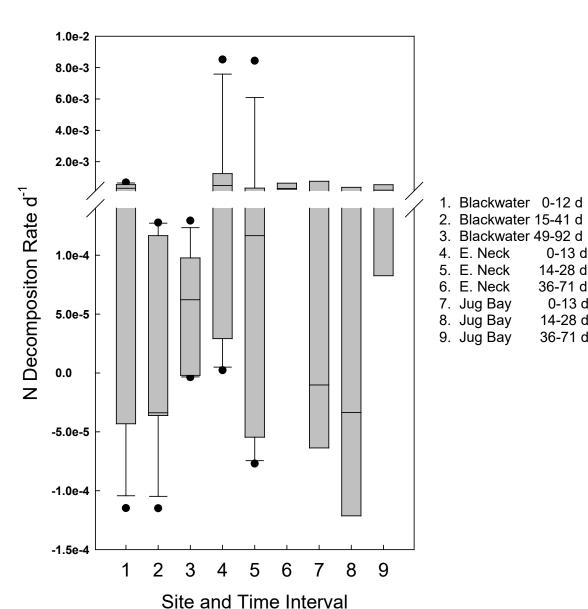
Aerobic decay rate of organic matter (assuming oxygen fluxes = carbon mineralization)


Decay rate of wetland organic matter at 4 sites compared to the algal G2 rate from DiToro (2001)

DIN (NH₄⁺ + NOx⁻) decay rates over time intervals of 1-8 days (1), 8-28 days (2), 28-50 days (3) and 50-97 days (4).

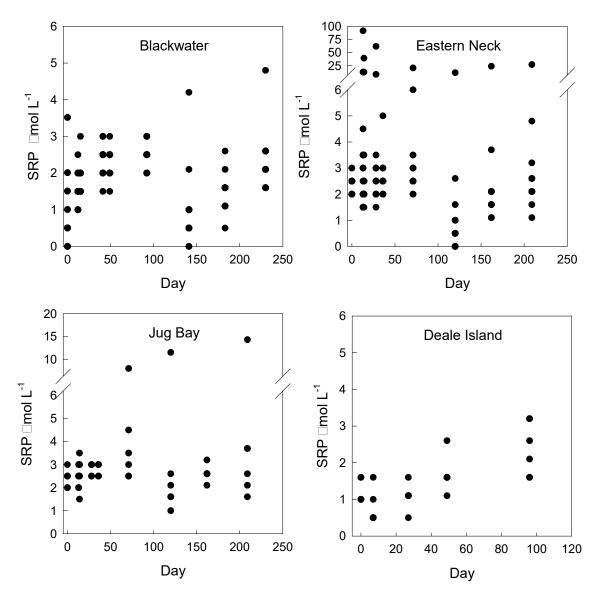
The decay rate of N remineralization was similar to the rates estimated for organic matter remineralization (~5x10⁻⁵ d⁻¹)

Aerobic N decomposition – Deale Island

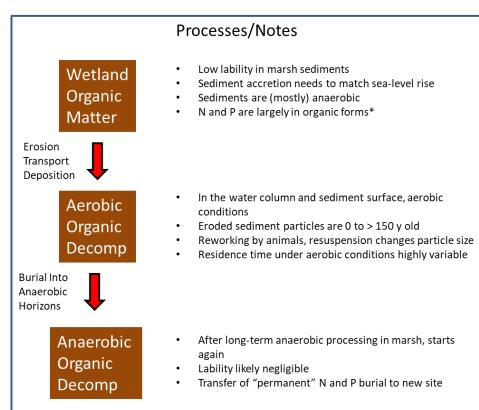


Interval

Cornwell et al. 2018


Aerobic N decomposition – All sites

DIN ($NH_4^+ + NOx^-$) decay rates at all sites.


No clear increase in DRP over time, P decay rates could not be calculated.

DRP concentrations during incubation – all sites

Results from recent study – Conclusions

- Wetland organic matter was recalcitrant and decomposed slowly
- Incubation experiments suggest that decay rates for N and C are ~ 7 x 10⁻⁵ d⁻¹ under aerobic conditions (comparable to G3 material)
- The relatively low concentration of organic
 P in particulates resulted in no apparent P
 release
- Overall, the erosion of wetland sediments does not appear to release substantial amounts of N and organic P, even under the most favorable conditions

Proposed changes to model coefficients for shoreline erosion loads based on Cornwell et al. 2018

	Current values	Proposed values
Sediment bulk density (g/cm³)	1.38 banks 0.62 marshes	1.38 banks0.3 marshes
[N] (%)	0.029 banks 0.029 marshes	0.029 banks 1.20 marshes
[P] (mg/g)	0.205 banks 0.205 marshes	0.205 banks 0.70 marshes
% IP	14	14
OM decay rate (d ⁻¹)	20% G2 (180 * 10 ⁻⁵) 80% G3 (6.5 * 10 ⁻⁵)	100% G3 (based on observed decay rate ~ 7 * 10 ⁻⁵)

Numbers will be subject to verification and potential adjustments during model calibration