WSM Model Evaluation and Proposed Modifications to Progress Reporting

William Keeling VADCR and Kenn Pattison PADEP

Modeling Workgroup Meeting

January 8, 2013

Presentation Outline

- Suggested testing period for Phase 6.x WSM and possible analysis to be conducted
- Impact of Constant Delivery Factors on 2009 Progress – Should CDF be used on progress runs?
- Suggested modification to how progress is simulated with the WSM

Phase 6.x Test Period and Criteria

- Proposed minimum 6 months to conduct analysis
- Determine which analysis to conduct and pass/fail criteria per analysis – MWG & STAC
- Determine and document appropriate scale of use and other limitations of WSM MWG & STAC
- Uncertainty analysis done post correction of any failed criteria

Possible Tests - Hydrology

- Propose conducting similar analysis as done by VA on phase 5.x (HSPF EXP) in addition to standard CBP hydrologic evaluations
- HSPF EXP has established acceptable error per criteria evaluated
- Scale and hydrologic balancing
 - Small watersheds verses fall line stations
 - e.g. Harrisonburg VA verses Potomac at Chain Bridge

HSPF EXP Criteria

- Total Volume ± 10%
- Base Flow Recession ± 0.3
- Lowest 50% of Flows ± 10%
- Highest 10% of Flows ± 15%
- Storm Volume ± 20%
- Summer Storm Volume ± 50%
- Storm Peaks ± 20%
- Summer Volume ± 30%
- Winter Volume ± 30%

WSM Input Files Sensitivity Tests

(Needing test and pass/fail criteria established)

- Examine outputs after varying inputs ± 50% & 90%
 - Maximum Crop Uptake
 - Uptake Curve
 - Fertilizer
 - Manure
 - Legumes
 - Percent Cover
 - Combinations of these inputs (e.g. manure and fertilizer)
- BMP Scenarios
 - Do we see what we expect from application of BMPs
 - Loading increases with the application of BMP or BMP treatment train in model would be an unexpected (failing) outcome
 - May require changes to Scenario Builder instead of WSM change

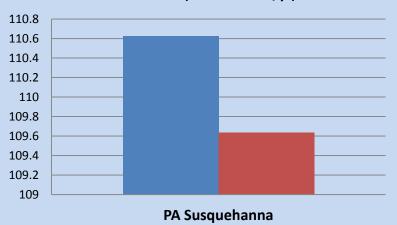
WSM Input Files Sensitivity Tests

Example: Delivered Loading Reductions from Anthropogenic Input Reduction

Land Use (Baywide)	Load Type	Pollutant	50% input reduction	99% input reduction
alf	del	TOTP	51%	94%
hom	del	TOTP	75 %	96%
hwm	del	TOTP	69%	93%
hyw	del	TOTP	54%	92%
npd	del	TOTP	23%	46%
pas	del	TOTP	3%	5%
rpd	del	TOTP	23%	46%
trp	del	TOTP	24%	47%
urs	del	TOTP	25%	50%

Impact of Constant Delivery Factors on Annual Progress Runs

- Is the use of constant delivery factors on annual progress runs introducing error over the old or standard way where model delivery factors are generated per scenario?
- Is this error compounding what is communicated as progress with the use of 10year averaging?
- Are we portraying a false since of progress?

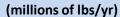

Impact of Constant Delivery Factors

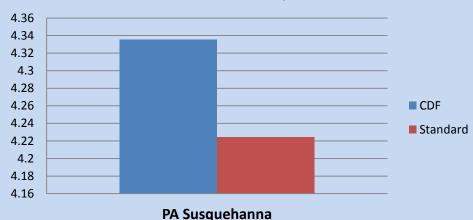
CDF

■ Standard

2009 Progress Nitrogen

(millions of lbs/yr)

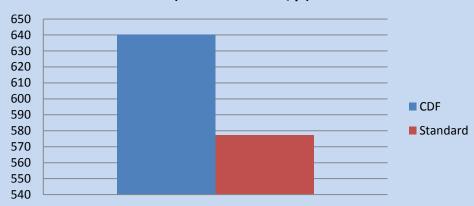

2009 Progress Nitrogen


(millions of lbs/yr)

Impact of Constant Delivery Factors

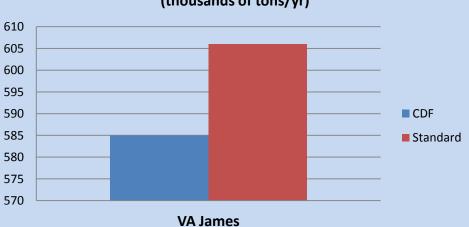
2009 Progress Phosphorus

2009 Progress Phosphorus


(millions of lbs/yr)

Impact of Constant Delivery Factors

2009 Progress Sediment


(thousands of tons/yr)

VA Rappahannock

2009 Progress Sediment


(thousands of tons/yr)

Another Way to Use the WSM for Progress Reporting

- Currently use 10-year averaging period to represent annual progress
- Same 10-year hydrologic and climatological data set used for all progress runs
- Different land use, point source discharges, and NPS BMP representation
- Creates confusion when comparing model results and actual annual loadings – Washington Post Story – OMB, GAO, EPA IG audits

Susquehanna Estimated Nitrogen Loadings 1985 to 2009

Another Way to Use the WSM for Progress Reporting

- Propose adding to annual progress modeling repertoire not replacing existing methods
- Propose using WSM to simulate actual annual data not a 10-year average
- Will require annual data inputs of climatological and hydrologic data in addition to other data sets currently used
- Benefits seen as improving credibility, ease of communication, removes Washington Post type criticism

Questions?