

Context

- Common rotation for New York dairy farms: 3-4 years corn and 3-4 years alfalfa/grass hay
- For corn, manure first; fertilizer N only if manure N is deemed insufficient
- Manure allocation is done before corn planting (fall and/or spring)
- (Regulated) farms need planning tools for allocation of manure and fertilizer (Certified Nutrient Management Plans)
- In New York, Cornell University provides baseline (foundational) guidelines (Land Grant University)

Cornell Nitrogen Guidelines in Fall 2000 in bushels/acre in lbs N/acre (yield potential*1.2) - soil N - sod N N req. = (fertilizer efficiency/100) in lbs N/acre in % - past and/or current manure credits

Context Yield Potential • Yield potential: "yield 3-4 years out of 5 under good management" • New York has about 600 soil types; sand to heavy clay • Cornell database has yield potential values per soil type, with/without • Database last updated ~20 years ago

Cornell N Guidelines in 2000

Two options:

- 1. Corn yield potential for the soil type as per Cornell soil database and recommendations based on corn N equation (Agronomy Factsheet 35)
- 2. Actual corn yield measured (3 years of data) under current N guidelines (N management as in approach 1)

http://nmsp.cals.cornell.edu/guidelines/factsheets.htm

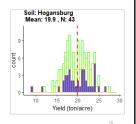
Context: Issues that Surfaced

- · Use of increased N rates with limited or no documentation
 - Risk to farmers and environment
 - General belief: higher yield = more N needed
 - · Not supported by data
- Limited funds to re-evaluate book values
- Yield potentials per soil type may not capture real variability; farm and field specific data better

1

Adaptive Management NRCS Agreemy Industrial Man No. 8 Adaptive Noticest Management Adaptive Noticest Management Process Adaptive Noticest Management Process 2011 2013 2014

Adaptive Management in New York since 2018

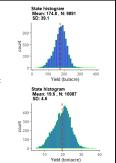

- 1. Targeted CSNT from top 25% yield area of the field
- 2. Comparison strip with control treatment (check strip)
- 3. 2-3 georeferenced photos of leaf N status within the top 25% yield area; when the 1-3 lowest true leaves are green, a targeted CSNT needs to be taken
- 4. For crops other than corn, determine and record an individual field N balance
 - [total N applied + N supply by soil and crop rotation credits per Cornell soils database] minus N removed in harvest

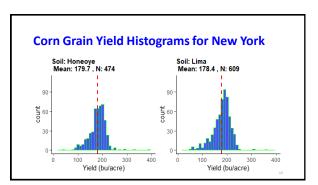
Adaptive Management in New York since 2018

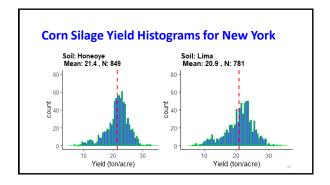
- All adaptive management options require measuring yield
- Farmers with yield monitors can set farm-specific and field-specific yield potentials (3 or more years of data)
- Their data can contribute to updating of book values
- For those without yield data
- For those with insufficient amount of yield data
- Calibration and data cleaning are important

Updating of the Cornell Yield Database

- Update existing corn grain yield database
- Develop an independent corn silage yield database
- Essential step: all yield monitor data were cleaned using the protocol of Kharel et al. (2019).
- Farmers received their own yield reports (yield per field and per soil type)


State Yield Histograms


The new database showed higher average yields than state reported averages


Yield monitor dataset (83% from 2014-2018): 19.6 tons/acre and 175 bu/acre

Ag Statistics averages (2014-2018): 17.6 tons/acre and 148 bu/acre

NY Ag Statistics averages (2017-2018): 18.5 tons/acre and 160 bu/acre

Corn Yields for New York

Grain:

- 41 soil types with 50 or more datapoints
- Mean yields ranged from 140 to 196 bu/acre
- Standard deviation: 39 bu/acre

Silage:

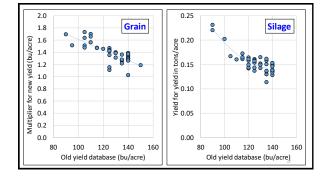
- 44 soil types with 50 or more datapoints
- Mean yields ranged from 17.0 to 20.6 tons/acre
- Standard deviation 4.6 tons/acre

How to Proceed?

Given:

Some bias in the data (higher yielding fields)?

Aim:
Set realistic yield potentials
Incentivize continued yield assessment


Proposed approach:
Use means; assume soils are drained
Include soils with at least 50 data points and where mean ≈ median

How to Proceed?

What about other soil types?

Options:

• Update only those for which we have histograms?
• Extract a relationship from current soil type data:
• Extrapolate to entire database?
• Use lowest multiplier for all other soil types?
• Reduce values for undrained scenarios?

How to Proceed?

Participatory approach

Meetings with:

- NMSP internal advisory committee (Cornell faculty, staff, extension)
- NMSP external advisory committee (consultants, farmers, agencies, Farm Bureau, Northeast Dairy Producers Association, etc.)
- · Certified crop advisor annual meeting
- Winter extension meetings

10

Cornell Nitrogen Guidelines in Fall 2000

Other States and the 1.2 Multiplier?

- Maryland, Pennsylvania, Tennessee, Virginia: 1.0-1.25 lb N/bu
- Florida: 0.8-1.2 lb N/bu
- Vermont: 0.9-1.0 lb N/bu
- North Carolina: 0.8-1.0 lb N/bu
- Kansas, Utah, Wyoming: 1.6 lb N/bu
- Idaho, Washington, Oregon: 1.4–1.5 lb N/bu
- Mississippi: 1.3 lb N/bu

Idaho and South Carolina decrease by 0.1–0.2 lb N/bu across yield levels ranging from 100–200 bu/acre

Summary

- · Yield potential databases are needed
 - Models for in-season adjustments require user-entered "yield goal"
- Updates are feasible now but yield monitor data cleaning is essential!
- Setting of yield potentials needs to incentivize measuring yield and avoid excessive N applications; work ongoing
- Higher yielding fields typically need less N per lbs of N taken up
 Adjust the 1.2 multiplier as yields increase
- Research focus on quicker/better ways to measure yield
- Development of farm specific yield stability zones

Thanks!

- Farmers
- Consultants
- Cornell Cooperative Extension
- Cornell students
- Northern New York Agricultural Development Program (NYADP)
- New York Farm Viability Institute (NYFVI)
- New York Corn Growers Association (NYCGA)
- Federal Formula Funds

Quirine Ketterings qmk2@cornell.edu

Questions?