Rbit004
6/20/2014
Elgin Perry
eperry@chesapeake.net

Factors
In this Rbit, we look at factors which are a special data structure in R. A factor is a vector which is used to define groups. Mostly I use them in dataframes to define groups of the other data in the data frame. A factor vector associates both an ordinal number and a character string with each group. The ordinal number defines the order of the groups and the character string gives the group a name. So for example, if you execute a boxplot where the groups are defined by a factor in the dataframe, the ordinal number controls the order in which the groups are plotted and character string will be used as a label for each box.

By default, the read.table() function is R forces any columns containing character strings to be a factor. I have previously advised against letting R do this. Further down, I will give examples of how this can lead to confusion. First let’s look at creating a factor using the factor() function which is what I recommend. For this we use the snook data. In this script it is read as usual and then factor is applied to water.body. The dataframe column ‘length’ is then plotted as a function of the new factor column ‘water.body.f’ using the boxplot() function.

options(stringsAsFactors = FALSE)

be sure to change \ to /
ProjRoot <- 'c:/Projects/CBP/Rcourse/'
setwd(ProjRoot);

datafile <- paste(ProjRoot,"snook.tdf",sep='');
snook <- read.table(datafile, header=TRUE, sep="\t", na.strings="NA", dec=".", strip.white=TRUE,stringsAsFactors = FALSE)
snook[snook$length==40 & snook$water.body=='Atlantic'&snook$season=="May-Oct",'wgt.mean'] <- NA
#[1] "length" "water.body" "season" "wgt.mean" "wgt.min" "wgt.max"

snook$water.body.f <- factor(snook$water.body)
boxplot(length~water.body.f,data=snook)

[image:]

Note that the order of the groups is alphabetical. You can control the order of the groups by adding a levels argument to factor(). For example:

snook$water.body.f <- factor(snook$water.body,levels = c('Gulf','Atlantic'))
boxplot(length~water.body.f,data=snook)

[image:]

The elements given in the levels argument must equal exactly the values that appear in the data. Remember, R is case sensitive. You can also associate labels with the levels with a labels argument.

snook$water.body.f <- factor(snook$water.body,levels = c('Gulf','Atlantic'),labels=c('West Coast', 'East Coast'))
boxplot(length~water.body.f,data=snook)

[image:]

As far as I can tell, the use of labels completely supplants the original character strings. The data for water.body.f are now “East Coast” and “West Coast”.

[image:]

I am switching it back to using the original data as labels:

snook$water.body.f <- factor(snook$water.body,levels = c('Gulf','Atlantic'))

The next screen print shows some functions that can be used with factors as compared to characters. See if this all makes sense to you.

[image:]

The order of factors is also important when using linear models. Here is a linear model with water.body (not the factor) as an explanatory variable.

lm1 <- lm(wgt.mean ~ water.body, data=snook)
summary(lm1)

[image:]

The lm() function has forced the column ‘water.body’ to be a factor and has used its default of setting the order to alphabetical, in this case levels=c(‘Atlantic’, ‘Gulf’). Furthermore, in order to make this linear model with a grouping variable identifiable, lm() has dropped out (set to zero) the parameter for the first member of the factor (in this case ‘Atlantic’). In the output, there is only a parameter estimate for water.body=Gulf and that estimate is actually the difference between the mean weight for Gulf and that for Atlantic. The statistics for this difference tell you if Atlantic is significantly different from Gulf (in this case p > 0.05). If you are not familiar with stat package methods for fitting linear models, this probably sounds very confusing. If it is confusing, lets save it for a session on linear models. The important thing is that you can control which group has its parameter set to zero. This is helpful if you have a control group and want all other treatments compared to the control. Here I run the same model with the column ‘water.body.f’ and the results are reversed:

lm2 <- lm(wgt.mean ~ water.body.f, data=snook)
summary(lm2)
[image:]

Here we see that the parameter estimate is given for Atlantic which is actually the difference between Atlantic and Gulf. Note that the sign of the parameter estimate is reversed from above.

Earlier I promised a confusing example. For this I will simulate some data. That way you will get something a little extra in your study of factors.

To simulate data, I first create the data structure. First create a vector of 120 sequential integers to number the observations.

i <- 1:120

Now I create a vector to represent a seasonal pattern over the 120 observations base on a sin() function. After creating this, check it out with plot().

x <- sin(pi*i/120)
plot(i,x)

[image:]

Now we add noise to the data using the normal random number generator rnorm().

add some noise to x to create y
y <- x + rnorm(120,0,1)
plot(i,y)

[image:]

Now group the data by creating a numeric month variable from the index variable.

create month indices by truncating the record indices
month.num <- floor((i-1)/10)+1
boxplot(y~month.num)
[image:]

The seasonal pattern is obscured by noise, but still discernable. Keep this plot in mind because we will be comparing subsequent plots to this one.

Up to this point, I have been storing the data in vectors and relying on the fact that these is an element by element match between the x’s and y’s to keep the observations paired up. Many people do much of their data analysis using this method of data management. However, I feel that the data frame offers some advantages. For example, one variable may have a missing value causing the vector representing that variable to be a different length. At this point, I put the vectors I have created into a data frame.

create a data frame using the vectors created above as columns
test <- data.frame(index = i,x=x,y=y,month.num=month.num)
test[1:10,]

[image:]

Note the in the arguments of data.frame(), the term before the ‘=’ is the name of the data frame column, and the term after the ‘=’ is the data being assign to the data frame column. The contents of the vector i was put into the data frame column test$index and the contents of the vector x was put into test$x. Both x and test$x exist as separate objects. If you make a change in x, it will not change test$x unless you reassign the contents of x to test$x (e.g. test$x <- x).

Now I create some vectors of month names (vector length = 12) and then assign these to the records in the data frame based on month.num.

create a vector of month names
 months <- c('January','February','March','April','May','June','July','August','September','October','November','December')
create a vector of month name abreviations
months.abr <- c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec')
assign the character month strings to each row
test$month <- months[month.num]
test$month.abr <- months.abr[month.num]
test[1:30,]

[image:]

That concludes the data simulation and we move forward with an example of a confusing factor. Here I convert the test$month column to a factor test$month.f letting R use the default assignment of levels which is alphabetical order.

use factor function with default levels
test$month.f <- factor(test$month)

Now compare box plots using the original numeric month variable and using the factor month variable.
par(mfrow=c(2,1)) # sets up for multiple plots per page
look at box plot by original numeric order
boxplot(y~month.num,data=test)
vs. boxplot using the factor
now the months are displayed in alphabetical order not chronological order
boxplot(y~month.f,data=test)
[image:]

The data are plotted in chronological order in the top panel, but alphabetical order in the bottom panel where R uses its default levels. It is potentially more confusing to observe that there is not room on the x-axis for all of the month names and to decide to convert them to month numbers using the as.numeric() function.

even more confusing is this plot using numeric values of the factor
boxplot(y~month.num,data=test, main='chronological')
boxplot(y~as.numeric(month.f),data=test, main='alphabetical')

[image:]

This happen for me once when I let R read month names from a file and convert then to a factor automatically. I was left wondering why the data did not exhibit more of a seasonal pattern. I decided at that point that it is better to not let R create factors automatically, but rather to create factors with factor() and make a conscious decision regarding the ordering of the levels. In this case the factor() function would be used as follows:

#either of these two statements will assign levels to the months in chronolgical order
test$month.f <- factor(test$month.abr,levels=c('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug','Sep','Oct','Nov','Dec'))
#or
test$month.f <- factor(test$month.abr,levels=months.abr)

par(mfrow=c(3,1)) # sets up for multiple plots per page
boxplot(y~month.num,data=test, main='original')
boxplot(y~month.f,data=test, main='chronological')
boxplot(y~as.numeric(month.f),data=test, main='chronological')

[image:]

[bookmark: _GoBack]End of Rbit004.
image6.png
ew Misc Packages Windows Help

B BEIEE

VVVVVVVVY

> Iml <- Im(wgt.mean ~ water.body, data=snook
> summary (lml

call:
Im(formula = wgt.mean ~ water.body, data = snook

Residuals:
Min 10 Median 39 Max
-11.090 -7.289 -2.223 5.436 19.410

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 13.290 1.220 10.889 <2e-16 ***
water.bodyGulf -2.134 1.744 -1.224 0.224

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 '

Residual standard error: 8.543 on 94 degrees of freedom

(1 observation deleted due to missingness)
Multiple R-squared: 0.01568, Adjusted R-squared: 0.005208
F-statistic: 1.497 on 1 and 94 DF, p-value: 0.2241

1

image7.png
ew Misc Packages Windows Help

B BEIEE

VVVVVVVVY

> 1m2 <- Im(wgt.mean ~ water.body.f, data=snook;
> summary (1m2

call:
Im(formula = wgt.mean ~ water.body.f, data = snook!

Residuals:
Min 10 Median 39 Max
-11.090 -7.289 -2.223 5.436 19.410

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.155 1.246 8.952 3.12e-14 ***
water.body.fAtlantic 2.134 1.744 1.224 0.224

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 ' 1

Residual standard error: 8.543 on 94 degrees of freedom

(1 observation deleted due to missingness)
Multiple R-squared: 0.01568, Adjusted R-squared: 0.005208
F-statistic: 1.497 on 1 and 94 DF, p-value: 0.2241

406PM
6/18/2014

image8.png
Ele History Resize Windows

EEl =]
R R Console
R version 3.1.0 (2014-04-10) -- "Spring Dance”

Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many Contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.starc()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 1< 1:120
> x <= sin(pi*i/120)
> plot (1, %)

>

| p 829 AM
6/20/2014

image9.png
Ele Edit View Misc Packages Windows Help

EEIBERIEE

R Graphics: Device 2 (ACTIVE)

R version 3.1.0 (2014-04-10) —- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many Contributors.
Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.starc()' for an HTML browser interface to help.
Type 'q()' to quit R.

1< 1:120
X <~ sin(pi*i/120)
Dplot (1,x)

add some noise to x to create v
v <= x + rnorm(120,0,1)
plot (1,¥)

vvvvvuvy

100

833AM
6/20/2014

image10.png
Ele Edit View Misc Packages Windows Help

EGREEERIEE

R Graphics: Device 2 (ACTIVE)

R version 3.1.0 (2014-04-10) —- "Spring Dance"
Copyright (C) 2014 The R Foundation for Statistical Computing
Platform: x86_64-w64-mingw32/x64 (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale
R is a collaborative project with many Contributors.

Type 'contributors()' for more information and
‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.starc()' for an HTML browser interface to help.
Type 'q()' to quit R.

1< 1:120
X <~ sin(pi*i/120)
Dplot (1,x)

add some noise to x to create v

v <= x + rnorm(120,0,1)

Dplot (i,v)

create month indices by truncating the record indices
month.num <- floor ((i-1)/10)+1

boxplot (y~month . num)

VVVVVVV Y Yy

851AM
6/20/2014

image11.png
Ele Edit View Misc Packages Windows Help

EEIBERIEE

R Graphics: Device 2 (ACTIVE)

VY VVVVYV VY YYVY YV YV VYV Y Y Y Y YV Y Y

v

% create a data frame using the vectors created above as columns
> test <- data.frame(index = i,%=X,y=y,mOnth.num-month.num)

> test[1:10,]

index x v month.num

1 10.02617695 0.3411280 1
2 2 0.052335%6 0.158414% 1
s 3 0.07845910 -2.2512816 1
. 4 0.10452846 0.5662908 1
s 5 0.13052618 0.8751431 1
B 6 0.15643247 0.4110299 1
7 7 0.18223553 -0.636383¢ 1
e & 0.20731168 -0.3078798 1
s 9 0.23344536 1.9794246 1
10 10 0.25881205 0.2010161 1
>

%11AM
6/20/2014

image12.png
Ele Edit View Misc Packages Windows Help

EEIBERIEE

R Graphics: Device 2 (ACTIVE)

> § create a vector of month names
> months <- c('January’,'February', 'March’,'April’, 'May’,'June’,'July’, 'August’,'September’, 0§
> # create a vector of month name abreviations
> months.abr <- c('Jan', 'Feb’, 'Mar', 'Apr', ‘May’,'Jun’, 'Jul’, 'Aug’, 'Sep’, '0ct", 'Nov', 'Dec’
> # assign the character month strings to each row
> testSmonth <- months[month.num]
> testSmonth.abr <- months.abr [month.num]
> test[1:30,]

index x y month.num month month.abr
1 1 0.02617695 0.34112805 1 ganuary Jan
2 2 0.05233596 0.15841477 1 January Jan
s 3 0.07845910 -2.25128164 1 January Jan
. 4 0.10452826 0.56652072 1 January Jan
s 5 0.13052613 0.97514308 1 January Jan
i 6 0.15643447 0.41102992 1 January Jan
7 7 0.18223553 -0.63698338 1 January Jan
e & 0.20791168 -0.30787980 1 January Jan
s 9 0.23344536 1.97342455 1 January Jan
10 10 0.25881305 0.20101607 1 January Jan
11 11 0.28401534 -0.56505725 2 February Feb
12 12 0.30901699 -0.52661286 2 February Feb
13 13 0.33380686 -0.41470173 2 February Feb
12 14 0.35836795 -0.10213514 2 February Feb
15 15 0.38268343 -0.20460258 2 February Feb
16 16 0.40673664 0.06708283 2 February Feb
17 17 0.43051110 -0.30853156 2 February Feb
18 12 0.45339050 -0.32302461 2 February Feb
19 19 0.47715876 -1.98322743 2 February Feb
20 20 0.50000000 0.19311790 2 February Feb
21 21 0.52249856 1.39930492 3 Mazcn Mar
22 22 0.54463304 0.62033039 5 Mazcn Mar
23 23 0.56640624 -0.45943356 5 Mazcn Mar
24 24 0.58778525 0.17970679 5 Mazcn Mar
25 25 0.60876143 1.09516987 5 Mazcn Mar
26 26 0.62932033 0.46075350 5 Mazcn Mar
27 27 0.64944805 2.55042676 5 Mazcn Mar
28 28 0.66913061 0.36023506 5 Mazcn Mar
29 29 0.63835458 1.87823946 5 Mazcn Mar

30 0.70710678 1.18031082 3 Mazch Mar

image13.png
File Edit View Misc Packages Windows Help

S EEBREEE |

raphics: De

chronological

VVVVVVVVYYYYYYYY VYV VYV Y Y VY YV VYV Y YV Y

> par(mfrow=c(2,1)) # sets up for multiple plots per page
> # look at box plot by original numeric order

> boxplot (y~month.num,data=test, main='chronological')

> % vs. boxplot using the factor

> % now the months are displayed in alphabevical order mot chromological order December January
e

>

10:18AM
12072014

image14.png
File History Resize Windows

R Console

0l
e

23 4
I
1

[

[0
Il
[Tt
|I

[
1

0
I

-
b
[
),“
{Il

2
.
b

VYV VVVV VYV YYVY VY VYV YV VY VYV YYY Y Y YV YV VY Yy

alphabetical
<~ o |
P - _
- : é iy
° I
' -+ o o
o
> # even more confusing is this plot using numeric values of the factor v T T T T T
> par (mfrow=c(2,1)) # sets up for multiple plots per page
> boxplot (y-month.num, data=test, main='chronologicall) 6 7 8 9 10

> boxplot (y~as.numeric (month.) ,data=test, main='alphabeticall)
>

8 AM
6/20/2014

image15.png
File History Resize Windows

R R Console Grap

234
1

0
I
I

4

2

254
1

1
1
l]

o T T T T

Jan Feb M Apr

#either of these two statements will assign levels to the months in chronolgicall - T

testSmonth.f <- factor (testSmonth.abr,levels=c('Jan’,'Feb','Mar’,'Apr’, 'May','dy| o T H
for ol : -

testSmonth.f <- factor (testSmonth.abr,levels=months.abr)

il
{1
I

par (mfrow=c(3,1)) # sets up for multiple plots per page
boxplot (y~month.num, data=test, main='original') .
boxplot (y~month. £, data=test, main='chronologicall)
boxplot (y~as.numeric (month. £) ,data=test, main='chronologicall) h PR

2

VY VYV VVVYVYYVY VY VYV YY VYV YV YV VY VYV YY VY YV YV Y

10:41 AM
6/20/2014

@ il

image1.png
File

History Resize Windows

)=l

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY

options (stringsAsFactors = FALSE)

Dbe sure to change \ to /
ProjRoot <- 'c:/Projects/CBP/Rcourse/"'
setwd (ProjRoot) ;

datafile <- paste (ProjRoot, "snook.tdf",sep="");
snook <- read.table(datafile, header=TRUE, sep="\t", na.strings="NA", dec strip.white=TRUE, stringsAsFactors = FALSE)
snook[snook$length==40 & snookSwater.body=='Atlantic'&snook§season=="May-Oct", 'wgt.mean'] <- NA

#[1] "length” "water.body” "season” "wgt.mean” "wgt.min" "wgt.max"

snook$water.body.f <- factor (snook$water.body)
poxplot (length~water.body. £, data=snook)

247PM
6/18/2014

image2.png
File History Resize Windows

EEl =]

VVVVVVVVVVVVVVVVVVVVVVVVVVVVY

> snookS$water.body.f <- factor (snook$water.body,levels = c('Gulf','Atlantic'))
> boxplot (length~water.body. £, data=snook)
>

< >

image3.png
le History Besize Windows

)=l

VVVVVVVVVVVVVVVVVVVVVVVY

>
> snookS$water.body.f <- factor (snook$water.body,levels = c('Gulf','Atlantic'))
> boxplot (length~water.body. £, data=snook)

> 2factor

starting httpd help server ... done

> snook$water.body.f <- factor (snook$water.body,levels = c('Gulf','Atlantic'),labels=c('West Coast', 'East Coast'))
> boxplot (length~water.body. £, data=snook)
>

image4.png
ew Misc Packages Windows Help

BEEENE |

VVVVVVVVVVVVVVVVVVVY

snook[1:10,]
length water.body season wgt.mean wgt.min wgt.max water.body.f

Atlantic May-Oct 2.3
Gulf Apr-Sep
Atlantic Nov-Apr
Gulf oct-Mar
Atlantic May-Oct
Gulf Apr-Sep
Atlantic Nov-Apr
Gulf oct-Mar
Atlantic May-Oct
Gulf Apr-Sep

2.7 East Coast
West Coast
East Coast
West Coast
East Coast
West Coast
East Coast
West Coast
East Coast
West Coast

WRRNHHHHED
NoOOHJYLLLWLO

NWRNRNRNNNN
DN O

WRNWWWR NN
EhbowbO®n

VEO®Dao e W R

image5.png
ew Misc Packages Windows Help

B BEIEE

> as.numeric (snook$water.body. £)
[1121212121212121

[611 21212121212121

> as.numeric (snook$water.body)
[1] NA

[41] NA

[81] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Warning message:

NAs introduced by coercion

> levels (snook$water.body. f)

[1] "Gulf" "Atlantic"

> levels (snook$water.body)

NULL

> is.factor (snook$water.body.f)

[1] TRUE

> is.factor (snook$water.body)

[1] FALSE

> unclass (snook$water.body
1121212121212

[611 21212121212

attr(,"levels")

[1] "Gulf" "Atlantic"

> is.factor (unclass (snook$water.body.£))

[1] FALSE

21
21212121212121212121222

)

21212121212121212121212 12121212121212121212121
21212121212121212121212

£
1
1

12
22

422PM
6/18/2014

