# Predicting Fate and Transport of Toxic Air Pollutants using CMAQ

**Deborah Luecken** 

Atmospheric Modeling Division National Exposure Research Laboratory, U.S. EPA Research Triangle Park, NC

> CMAQ Model Peer Review Meeting R.T.P., NC December 17, 2003

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official Agency policy.

### **Outline**

- How this work contributes to EPA's mission and fits in with other work that has been presented here
- Specifics of the CMAQ-TX model applications
- Some preliminary results
- Finer "community scale" modeling and applications in urban areas
- What we are planning to do in the future

## Three current activities involve Toxic Air Pollutant modeling with CMAQ

- Mercury Modeling
  - Supports analyses of Clear Skies Initiative controls and international assessments
  - Multimedia linkages
- → HAPs modeling at large scales (36 km)
  - Supports the National Air Toxics Assessment (NATA)
  - Characterizes peak and background concentrations of HAPs and their sources
  - Provides boundary conditions for finer-scale modeling
- Urban and community-scale modeling (1-12 km)
  - Develops tools for local risk assessments and control strategy development, provides input for Human Exposure Models
  - Simulates airborne releases of hazardous agents at fine scales in urban environments (Homeland Security applications)
  - Gives us a better capability for assessing subgrid variability from within-grid sources and photochemistry, and to introduce this information into exposure models

## Why currently-used methods aren't sufficient

### Monitoring

- Can't get the spatial distribution
- Not always available at all times and places for all species
- Routine dispersion modeling (ISC, etc.)
  - Doesn't account for wind shear
  - Can't track plumes beyond 50 km
  - Can't handle chemistry correctly
  - Doesn't include biogenic sources

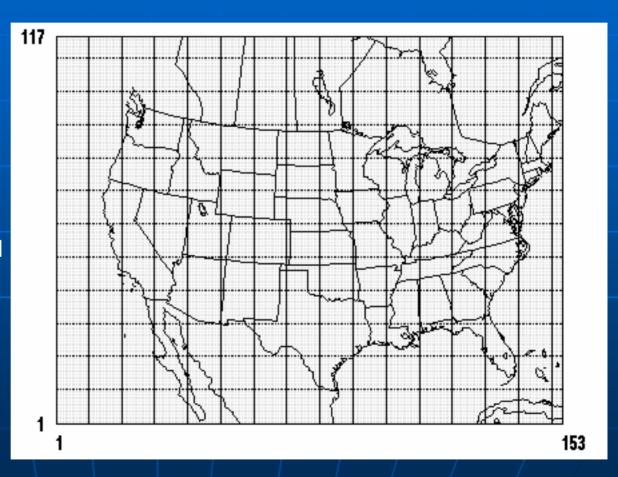
# First application of air toxics modeling (large-scale) is the National Air Toxics Assessment (NATA)

Every 3 years, EPA conducts a national-scale assessment of the pollutants of greatest concern. This assessment includes:

- Compiling emissions inventories of toxic air pollutants from outdoor sources
- 2. Estimating concentrations over the U.S. using ASPEN
- 3. Estimating population exposures using HAPEM
- 4. Characterizing potential public health risk due to inhalation of air toxics for both cancer and non-cancer effects.
- 5. Comparing concentration fields from CMAQ with ASPEN and revising health risk calculations to account for significant differences

## Toxic air pollutants studied under the NATA

| acetaldehyde         | chloroform                   | hexachlorobenzene       | tetrachloroethane                   |
|----------------------|------------------------------|-------------------------|-------------------------------------|
| acrolein             | 1,3-dichloropropene          | hydrazine               | trichloroethylene                   |
| acrylonitrile        | ethylene dibromide           | methylene chloride      | vinyl chloride                      |
| 1,3-butadiene        | ethylene dichloride          | perchloroethylene       | napthalene*                         |
| benzene              | ethylene oxide               | propylene<br>dichloride |                                     |
| carbon tetrachloride | formaldehyde                 | quinoline               |                                     |
| arsenic              | chromium                     | lead                    | nickel                              |
| beryllium            | coke oven emissions          | manganese               | polychlorinated<br>biphenyls (PCBs) |
| cadmium              | diesel particulate<br>matter | mercury                 | polycyclic organic<br>matter (POM)  |


## NATA Model domain 36-km grids across the continental U.S.

#### **Grid:**

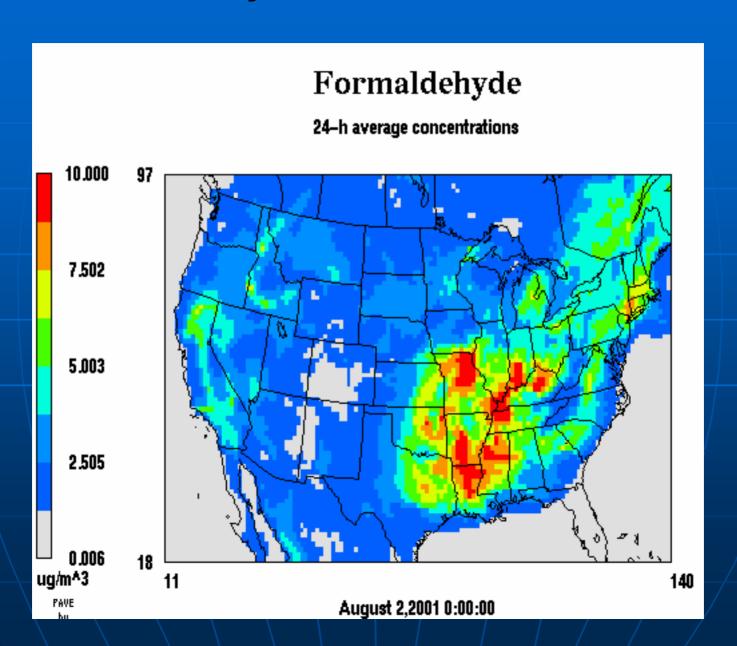
15 vertical layers 153 columns by 117 rows

Simulation period: Jan 1 –Dec 31, 2001 10-day spin-up

Platform: IBM SP2

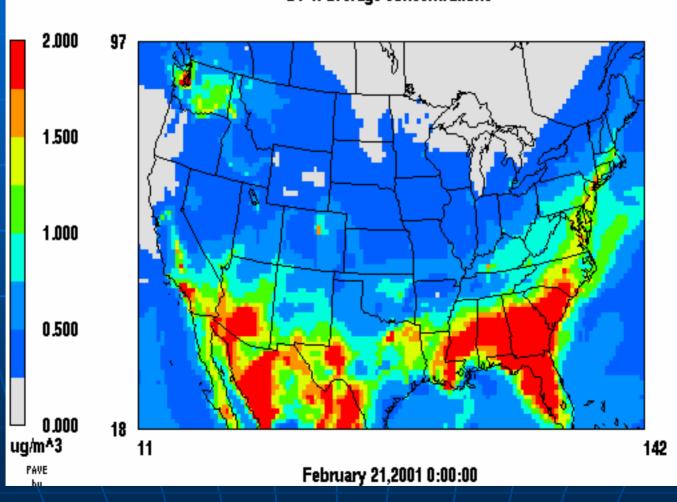


### **CCTM**, Meteorology and Emissions

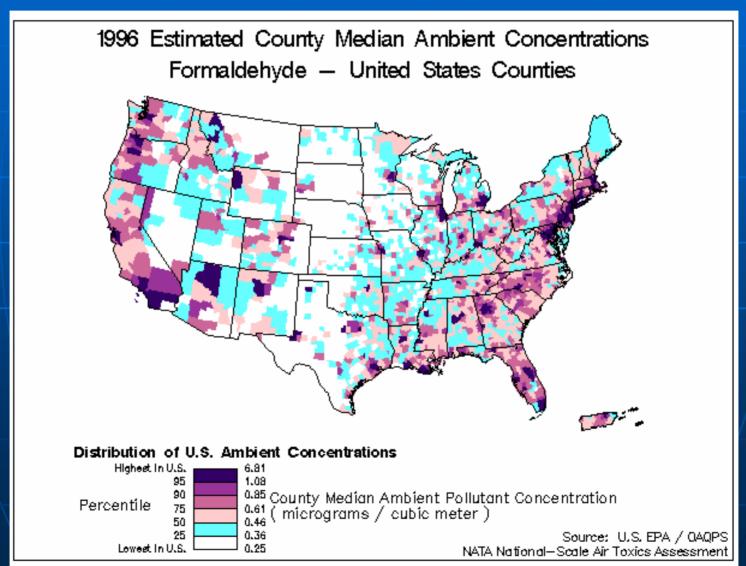

- CMAQ v4.3, September 2003
- Includes aqueous chemistry but no aerosols (future simulations to include aerosols)
- EBI solver
- Meteorology from MM5v3.6, 34 vertical layers
- MM5 files processed with MCIP v.2.2

- Emissions of criteria pollutants using NEI v.2
- Emissions of toxic pollutants from NEI v.3
- Biogenic emissions from BEIS v3.11
- Processed with SMOKE v.2.0 with new plume rise calculations

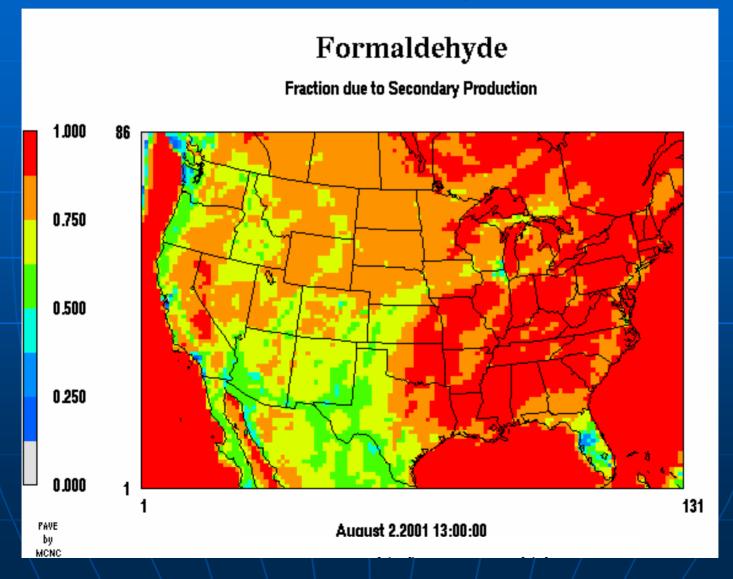
### Chemical Mechanisms


- First Simulation uses CB4TX1
  - Release version of CB4 with modifications to include explicit HAPs
  - Formaldehyde and acetaldehyde are explicit
  - VOC HAPs only in first simulation
  - Tracking of concentrations due to primary emissions for:
    - Formaldehyde
    - Acetaldehyde
    - Acrolein from 1,3-butadiene
  - Other HAPs only have degradation offline
- Sensitivity studies with SAPRC99TX2

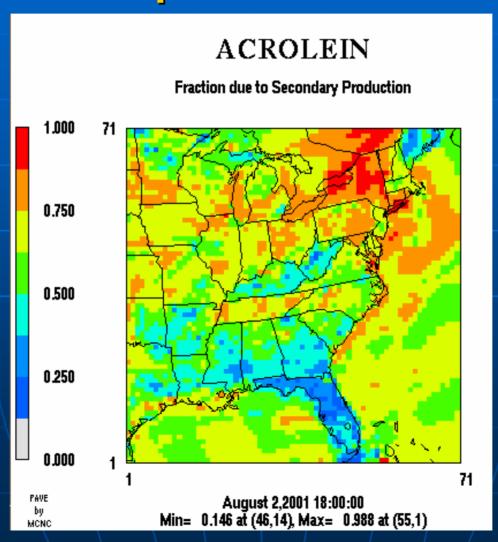
## Preliminary Results - Summer







24-h average concentrations




# We expect that CMAQ predictions will differ, both in magnitude and spatial distribution from previous NATA-ASPEN concentrations



## Secondary Production from other VOCs is the dominant source of atmospheric formaldehyde



# Other chemicals can also have significant, but variable secondary production



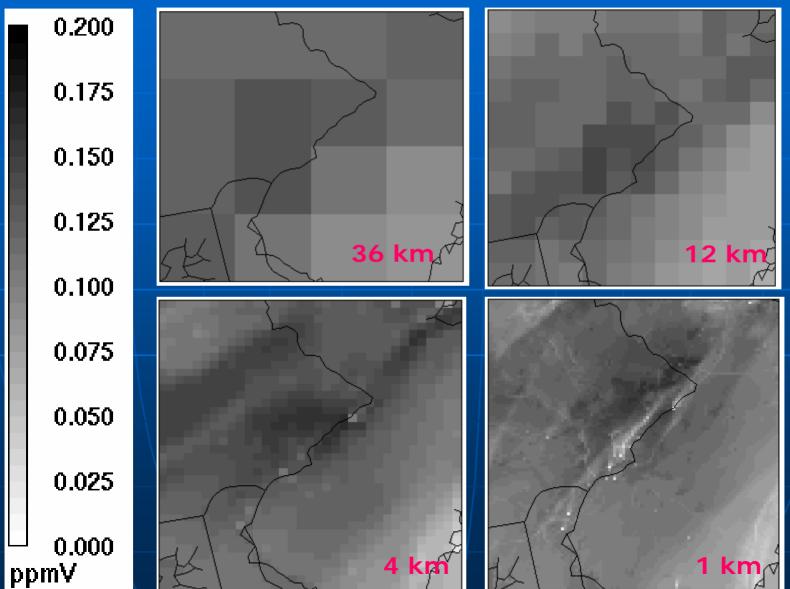
## Some questions that we are trying to answer with this information

- ? What are the largest sources of toxic aldehydes? How important are biogenic sources in determining concentrations of toxics?
- ? What conditions tend to maximize concentrations of HAPs? When/where is deposition the greatest?
- ? Are seasonal and diurnal variations significant enough to affect calculated exposures?
- ? How do we account for both hot spots and secondary production? (How fine does the grid resolution have to be?)

## Extension of Air Toxics Modeling to Urban and Community Scales

- Exposure assessments are primarily for urban population centers.
- Urban meteorological fields, dispersion parameters are strongly influenced by urban features such as buildings and their distribution, street canyons, vegetative canopy, etc.
- To account for the effects of urban morphology, we are incorporating Urban Canopy Parameterizations (UCPs) in CMAQ's meteorological processor, MM5.

# First application of air toxics modeling at urban scales is the Philadelphia risk assessment


ORD/NERL/AMD is collaborating with Region 3 and the State of Delaware to conduct a joint pilot risk assessment of toxic air pollutants within the Philadelphia and state of Delaware, involving:

- Determining concentrations from annual CMAQ simulations at 12, 4 and 1 km
- 2. Compiling a highly-resolved inventory of sources of HAPs
- 3. Estimating subgrid concentrations distribution (using ISC)
- 4. Estimating population exposures using HAPEM modified to handle SGV distributions
- 5. Characterizing potential public health risk due to inhalation of air toxics for both cancer and non-cancer effects.

### CCTM, Meteorology and Emissions

- Nested grid domains of 12, 4, and 1 km centered over Philadelphia and Delaware
- CMAQ model, chemical mechanism, solver, and emissions files are same as used in NATA simulation
- Boundary and initial conditions extracted from NATA simulation
- MM5 to be run in a one-way nested configuration: 108, 36, 12, 4
   (and 1 km horizontal grid spacing).
  - UCPs to be used only for the 1 km domain.
  - Turbulent scheme model: Gayno-Seaman PBL with turbulent length scale of Bougeault and Lacarrere (1989).
- Computational platform: Linux, 8 nodes, 16 processors

## More structure is apparent when "nesting" down from regional to fine scale



Ozone, July 14, 1995, 6PM local time

## Questions that we are trying to answer

- ? Can we model SGVs with parameterizations?
- ? Can we develop accurate meteorological fields for CMAQ urban applications at fine scales?
- What degree of within-grid concentration variability do we find in CMAQ simulations? How does this vary for different grid resolutions?
- ? Can we improve risk assessments by conducting AQ modeling at fine scales and including within grid (SGV) variability?

## Status of Urban Toxics Modeling

(Paradigm: Drive risk-based exposure models with both resolved (CMAQ) and SGV (PDFs) concentration distributions)

- Currently applying prototype for applications in Philadelphia and Houston
- Developing, testing and refining the prototype urban canopy parameterizations (UCP) in MM5 (Houston)
- Developing PDFs of sub-grid variability for different parent grid resolutions
  - Within grid photochemistry using LESChem
  - Primary sources: Developing parameterizations from physical, CFD and dispersion modeling
- Using Philadelphia application to evaluate the methodology, including comparison with comprehensive ISC results

# Follow up Work: near-term (1-2 y) to mid-term (3-5 y)

#### **Large-Scale**

- Work with OAQPS to explore the use of CMAQ results to improve the NATA
- Expand the list of pollutants simulated to include species such as particle-bound toxics such as metals, PAHs
- → Apply improvements to next NATA

#### **Urban Scale**

- Initial demonstration of linkage of CMAQ and SGV concentration distributions to human exposure models.
- → Improve, apply urbanized MM5 to CMAQ.
- Improved modeling of subgrid scale processes in another urban area (Houston)
- → Refine, apply, evaluate nested CMAQ and PDFs in another city (TBD).

## Summary

- The CMAQ model is being applied for air toxics applications
  - Initial simulations are being performed over the continental US, for high priority gas-phase toxics
  - Simulations of Mercury concentrations and deposition are being performed and compared with other models
  - The continental simulations are being used to provide boundary conditions for finer-scale simulations, nesting down over urban areas
- CMAQ simulations will improve the way that EPA predicts concentrations of HAPs
  - For species with significant secondary production
  - When diurnal variations of concentrations can change the exposure significantly
  - When concentrations are transported large distances
- Fine-scale modeling with CMAQ and corresponding SGV is being developed to improve population exposure estimates