Modeling Workgroup Publications
Water quality impacts of climate change, land use, and population growth in the Chesapeake Bay watershed
Published on June 15, 2023Bhatt, G., Linker, L., Shenk, G., Bertani, I., Tian, R., Rigelman, J., Hinson, K., and Claggett, P. 2023. “Water quality impacts of climate change, land use, and population growth in the Chesapeake Bay watershed.” JAWRA Journal of the American Water Resources Association 59 (6): 1313–1341. https://doi.org/10.1111/1752-1688.13144.
View detailsInteractions of warming and altered nutrient load timing on the phenology of oxygen dynamics in Chesapeake Bay
Published on January 10, 2023Basenback, N., Testa, J.M., Shen, C. 2023. "Interactions of warming and altered nutrient load timing on the phenology of oxygen dynamics in Chesapeake Bay." Journal of the American Water Resources Association 59 (2): 429–445. https://doi.org/10.1111/1752-1688.13101
View detailsQuantifying the Response of Nitrogen Speciation to Hydrology in the Chesapeake Bay Watershed Using a Multilevel Modeling Approach
Published on December 1, 2022Bertani, I., G. Bhatt, G.W. Shenk, and L.C. Linker. 2022. "Quantifying the Response of Nitrogen Speciation to Hydrology in the Chesapeake Bay Watershed Using a Multilevel Modeling Approach." Journal of the American Water Resources Association 58 (6): 792–804. https://doi.org/10.1111/1752-1...
View detailsExtent and Causes of Chesapeake Bay Warming
Published on December 1, 2022Hinson, K.E., M.A.M. Friedrichs, P. St-Laurent, F. Da, and R.G. Najjar. 2022. "Extent and Causes of Chesapeake Bay Warming." Journal of the American Water Resources Association 58 (6): 805–825. https://doi.org/10.1111/1752-1...
View detailsClimate Extremes and Variability Surrounding Chesapeake Bay: Past, Present, and Future
Published on December 1, 2022St. Laurent, K.A., V.J. Coles, and R.R. Hood. 2022. "Climate Extremes and Variability Surrounding Chesapeake Bay: Past, Present, and Future." Journal of the American Water Resources Association 58 (6): 826–854. https://doi.org/10.1111/1752-1....
View detailsMechanisms Controlling Climate Warming Impact on the Occurrence of Hypoxia in Chesapeake Bay
Published on December 1, 2022Tian, R., C.F. Cerco, G. Bhatt, L.C. Linker, and G.W. Shenk. 2022. "Mechanisms Controlling Climate Warming Impact on the Occurrence of Hypoxia in Chesapeake Bay." Journal of the American Water Resources Association 58 (6): 855–875. https://doi.org/10.1111/1752-1....
View detailsModeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine Ecosystem
Published on December 1, 2022Testa, J.M., N. Basenback, C. Shen, K. Cole, A. Moore, C. Hodgkins, and D.C. Brady. 2022. "Modeling Impacts of Nutrient Loading, Warming, and Boundary Exchanges on Hypoxia and Metabolism in a Shallow Estuarine Ecosystem." Journal of the American Water Resources Association 58 (6): 876–897. https://doi.org/10.1111/1752-1....
View detailsA Numerical Study of Hypoxia in Chesapeake Bay Using an Unstructured Grid Model: Validation and Sensitivity to Bathymetry Representation
Published on December 1, 2022Cai, X., Y.J. Zhang, J. Shen, H. Wang, Z. Wang, Q. Qin, and F. Ye. 2022. "A Numerical Study of Hypoxia in Chesapeake Bay Using an Unstructured Grid Model: Validation and Sensitivity to Bathymetry Representation." Journal of the American Water Resources Association 58 (6): 898–921. https://doi.org/10.1111/1752-1...
View detailsImpacts of Sea-Level Rise on Hypoxia and Phytoplankton Production in Chesapeake Bay: Model Prediction and Assessment
Published on December 1, 2022Cai, X., J. Shen, Y.J. Zhang, Q. Qin, Z. Wang, and H. Wang. 2022. "Impacts of Sea-Level Rise on Hypoxia and Phytoplankton Production in Chesapeake Bay: Model Prediction and Assessment." Journal of the American Water Resources Association 58 (6): 922–939. https://doi.org/10.1111/1752-1....
View detailsNutrient Retention and Release in Eroding Chesapeake Bay Tidal Wetlands
Published on December 1, 2022Cornwell, J.C., M.S. Owens, and L.W. Staver. 2022. "Nutrient Retention and Release in Eroding Chesapeake Bay Tidal Wetlands." Journal of the American Water Resources Association 58 (6): 940–957. https://doi.org/10.1111/17
View details